CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4346-4355.DOI: 10.11949/0438-1157.20190405
• Energy and environmental engineering • Previous Articles Next Articles
Zhongqian LING(),Chao ZHOU,Xianyang ZENG,Bo LING,Jiongjie QIAN
Received:
2019-04-17
Revised:
2019-06-03
Online:
2019-11-05
Published:
2019-11-05
Contact:
Zhongqian LING
通讯作者:
凌忠钱
作者简介:
凌忠钱(1977—),男,博士,副教授,CLC Number:
Zhongqian LING, Chao ZHOU, Xianyang ZENG, Bo LING, Jiongjie QIAN. Experimental study on pollutant emission characteristics of lower-heat-value ethylene combustion in porous media[J]. CIESC Journal, 2019, 70(11): 4346-4355.
凌忠钱, 周超, 曾宪阳, 凌波, 钱炯杰. 多孔介质内低热值乙烯燃烧的污染物排放特性试验研究[J]. 化工学报, 2019, 70(11): 4346-4355.
Add to citation manager EndNote|Ris|BibTeX
测量参数 | 分辨率 | 精度 |
---|---|---|
温度 | 0.0001 K | ±1 K |
O2 | 0.01%(体积) | ±0.2%(体积) |
CO2 | 0.01%(体积) | ±读数的1% |
NO x | 1 mg/m3 | ±5 mg/m3 |
CO | 1 mg/m3 | ±读数的5% |
Table 1 Indicator of key measurement parameters
测量参数 | 分辨率 | 精度 |
---|---|---|
温度 | 0.0001 K | ±1 K |
O2 | 0.01%(体积) | ±0.2%(体积) |
CO2 | 0.01%(体积) | ±读数的1% |
NO x | 1 mg/m3 | ±5 mg/m3 |
CO | 1 mg/m3 | ±读数的5% |
当量比φ | 流速V/(cm/s) | 空隙率/% |
---|---|---|
0.45 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.5 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.55 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.6 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.65 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.7 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
Table 2 Test conditions
当量比φ | 流速V/(cm/s) | 空隙率/% |
---|---|---|
0.45 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.5 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.55 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.6 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.65 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.7 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
1 | Minde G P , Magdum S S , Kalyanraman V . Biogas as a sustainable alternative for current energy need of India[J]. Sustainable Energy & Environment, 2013, 4: 121-132 |
2 | 陈福龙 . 低热值煤气燃烧实验研究[D]. 武汉: 华中科技大学, 2009. |
Chen F L . Experimental study on low calorific value gas combustion[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
3 | Sobiesiak A , Wenzell J C . Characteristics and structure of inverse flames of natural gas[J]. Proceedings of the Combustion Institute, 2005, 30(1): 743-749. |
4 | Wood S , Harris A T . Porous burners for lean-burn applications[J]. Progress in Energy and Combustion Science, 2008, 34(5): 667-684. |
5 | Gao H , Qu Z , Tao W , et al . Experimental study of biogas combustion in a two-layer packed bed burner[J]. Energy & Fuels, 2011, 25(7): 2887-2895. |
6 | Weinberg F J . Combustion temperatures: the future?[J]. Nature, 1971, 233(5317): 239-241. |
7 | Janvekar A A , Abdullah M Z , Ahmad Z A , et al . Assessment of porous media burner for surface/submerged flame during porous media combustion[C]//International Conference on Education. 2017. |
8 | Babkin V S , Korzhavin A A , Bunev V A . Propagation of premixed gaseous explosion flames in porous media[J]. Combustion & Flame, 1991, 87(2): 182-190. |
9 | Minaev S S , Potytnyakov S I , Babkin V S . Combustion wave instability in the filtration combustion of gases[J]. Combustion Explosion & Shock Waves, 1994, 30(3): 306-310. |
10 | Laevskii Y M , Babkin V S . Stabilized gas combustion wave in an inert porous medium[J]. Combustion Explosion & Shock Waves, 2008, 44(5): 502-508. |
11 | Mital R , Gore J P , Viskanta R . A study of the structure of submerged reaction zone in porous ceramic radiant burners[J]. Combustion & Flame, 1997, 111(3): 175-184. |
12 | Borra A J , Ellzey J L . Heat recirculation and heat transfer in porous burners[J]. Combustion & Flame, 2004, 137(1): 230-241. |
13 | Gonzalez H , Caro S , Toledo M , et al . Syngas production from polyethylene and biogas in porous media combustion[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4294-4304. |
14 | Toledo M , Gracia F , Caro S , et al . Hydrocarbons conversion to syngas in inert porous media combustion[J]. International Journal of Hydrogen Energy, 2016, 41(14): 5857-5864. |
15 | Mohamad A A . Combustion in porous media: fundamentals and applications[M]//Ingham D. Transport Phenomena in Porous Media III. Langford Kidlington: Elsevier Ltd, 2005: 287-304. |
16 | Mathis W M , Ellzey J L . Flame stabilization, operating range, and emissions for a methane/air porous burner[J]. Combustion Science and Technology, 2003, 175(5): 825-839. |
17 | Rumminger M D , Hamlin R D , Dibble R W . Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability[J]. Catalysis Today, 1999, 47(1/2/3/4): 253-262. |
18 | Keramiotis C , Stelzner B , Trimis D , et al . Porous burners for low emission combustion: an experimental investigation[J]. Energy, 2012, 45(1): 213-219. |
19 | Trimis D , Durst F . Combustion in a porous medium-advances and applications[J]. Combustion Science and Technology, 1996, 121(1/2/3/4/5/6): 153-168. |
20 | Gao H , Qu Z , Feng X , et al . Combustion of methane/air mixtures in a two-layer porous burner: a comparison of alumina foams, beads, and honeycombs[J]. Experimental Thermal and Fluid Science, 2014, 52: 215-220. |
21 | Gao H B , Qu Z G , Feng X B , et al . Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115: 154-161. |
22 | Liu J F , Hsieh W H . Experimental investigation of combustion in porous heating burners[J]. Combustion & Flame, 2004, 138(3): 295-303. |
23 | Keramiotis C , Founti M A . An experimental investigation of stability and operation of a biogas fueled porous burner[J]. Fuel, 2013, 103(1): 278-284. |
24 | Abdelaal M M , El-Riedy M K , El-Nahas A M . Effect of oxygen enriched air on porous radiant burner performance and NO emissions[J]. Experimental Thermal and Fluid Science, 2013, 45(Complete): 163-168. |
25 | Tseng C J . Effects of hydrogen addition on methane combustion in a porous medium burner[J]. International Journal of Hydrogen Energy, 2002, 27(6): 699-707. |
26 | Alavandi S K , Agrawal A K . Lean premixed combustion of carbon-monoxide-hydrogen-methane fuel mixtures using porous inert media[C]// ASME Turbo Expo: Power for Land, Sea, & Air. 2005. |
27 | 代华明, 林柏泉, 李庆钊, 等 . 水汽对多孔介质中低浓度瓦斯燃烧特性的影响[J]. 北京科技大学学报, 2013, 35(10): 1375-1381. |
Dai H M , Lin B Q , Li Q Z , et al . Effect of water vapor on low-concentration gas combustion characteristics in porous media[J]. Journal of University of Science and Technology Beijing, 2013, 35(10): 1375-1381. | |
28 | Gao H B , Qu Z G , Tao W Q , et al . Experimental investigation of methane/(Ar, N2, CO2)–air mixture combustion in a two-layer packed bed burner[J]. Experimental Thermal and Fluid Science, 2013, 44: 599-606. |
29 | 娄马宝 . 低热值气体燃料(包括高炉煤气)的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18. |
Lou B M . Utilization of low calorific value gas fuel (including blast furnace gas)[J]. Gas Turbine Technology, 2000, 13(3): 16-18. | |
30 | 王恩宇, 程乐鸣, 吴晋湘, 等 . 多孔陶瓷在燃烧领域的应用及存在问题[J]. 佛山陶瓷, 2005, (4): 35-39. |
Wang E Y , Cheng L M , Wu J X , et al . Application and problems of porous ceramics in the field of combustion[J]. Foshan Ceramics, 2005, (4): 35-39. | |
31 | 吴雪松, 程乐鸣, 闫珂, 等 . 工业级多孔介质低氮燃烧器试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2136-2141. |
Wu X S , Cheng L M , Yan K , et al . Experimental study on industrial grade porous medium low nitrogen burner[J]. Journal of Zhejiang University(Engineering Edition), 2018, 52(11): 2136-2141. | |
32 | Rørtveit G J , Zepter K , Ø Skreiberg , et al . A comparison of low-NO x burners for combustion of methane and hydrogen mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1123-1129. |
33 | Liu J F , Hsieh W H . Experimental investigation of combustion in porous heating burners[J]. Combustion & Flame, 2004, 138(3): 295-303. |
34 | 贾海龙 .有机废气流化床焚烧处理试验研究[D]. 杭州: 浙江大学, 2006. |
Jia H L . Experimental study on fluidized bed incineration treatment of organic waste gas[D]. Hangzhou: Zhejiang University, 2006. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[3] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[4] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[7] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[8] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[9] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[10] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[11] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[12] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[13] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[14] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[15] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||