[1] |
WANG H, TAN S C, WANG Y, et al. A multisource observation study of the severe prolonged regional haze episode over eastern China in January 2013[J]. Atmospheric Environment, 2014, 89: 807-815. DOI: 10.1016/j.atmosenv.2014.03.004.
|
[2] |
SONG Y, ZHANG Y, XIE S, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006, 40(8): 1526-1537. DOI: 10.1016/j.atmosenv.2005.10.039.
|
[3] |
SONG Y, XIE S, ZHANG Y, et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX[J]. Science of the Total Environment, 2006, 372(1): 278-286. DOI: 10.1016/j.scitotenv.2006.08.041.
|
[4] |
WANG H L, HAO Z P, ZHUANG Y H, et al. Characterization of inorganic components of size-segregated particles in the flue gas of a coal-fired power plant[J]. Energy & Fuels, 2008, 22(3): 1636-1640.
|
[5] |
王超, 刘小伟, 徐义书, 等. 660MW燃煤锅炉细微颗粒物中次量与痕量元素的分布特性[J]. 化工学报, 2013, 64(8): 2975-2981. DOI: 10.3969/j.issn.0438-1157.2013.08.039. WANG C, LIU X W, XU Y S, et al. Distribution characteristics of minor and trace elements in fine particulate matters from a 660 MW coal-fired boiler[J]. CIESC Journal, 2013, 64(8): 2975-2981. DOI: 10.3969/j.issn.0438-1157.2013.08.039.
|
[6] |
王超, 刘小伟, 吴建群, 等. 220MW热电联产锅炉中痕量元素的迁移及分布特性[J]. 化工学报, 2014, 65(9): 3604-3608. DOI: 10.3969/j.issn.0438-1157.2014.09.040. WANG C, LIU X W, WU J Q, et al. Migration and distribution characteristics of trace elements in 220MW cogeneration boiler[J]. CIESC Journal, 2014, 65(9): 3604-3608. DOI: 10.3969/j.issn. 0438-1157.2014.09.040.
|
[7] |
YI H, HAO J, DUAN L, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10): 2050-2057. DOI: 10.1016/j.fuel.2007.10.009.
|
[8] |
CHEN T M, TSAI C J, YAN S Y, et al. An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles[J]. Separation and Purification Technology, 2014, 136: 27-35. DOI: 10.1016/j.seppur.2014.08.032.
|
[9] |
BARRANCO R, GONG M, THOMPSON A, et al. The impact of fly ash resistivity and carbon content on electrostatic precipitator performance[J]. Fuel, 2007, 86(16): 2521-2527. DOI: 10.1016/j.fuel. 2007.02.022.
|
[10] |
CHEN J, YAO H, ZHANG P A, et al. Control of PM1 by kaolin or limestone during O2/CO2 pulverized coal combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2837-2843. DOI: 10.1016/j. proci.2010.06.158.
|
[11] |
GALE T K, WENDT J O L. Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Science & Technology, 2003, 37(11): 865-876. DOI: 10.1080/02786820390225808.
|
[12] |
GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combustion and Flame, 2002, 131(3): 299-307. DOI: 10.1016/S0010-2180(02)00404-2.
|
[13] |
LIGHTY J A S, VERANTH J M, SAROFIM A F. Combustion aerosols: factors governing their size and composition and implications to human health[J]. Journal of the Air & Waste Management Association, 2000, 50(9): 1565-1618. DOI:10.1080/10473289.2000.10464197.
|
[14] |
NINOMIYA Y, WANG Q, XU S, et al. Evaluation of a Mg-based additive for particulate matter (PM2.5) reduction during pulverized coal combustion[J]. Energy & Fuels, 2009, 24(1): 199-204. DOI: 10.1021/ef900556s.
|
[15] |
LIU Y, CHE D, XU T. Effects of NaCl on the capture of SO2 by CaCO3 during coal combustion[J]. Fuel, 2006, 85(4): 524-531. DOI: 10.1016/j.fuel.2005.08.001.
|
[16] |
LIU H, KATAGIRI S, KANEKO U, et al. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion[J]. Fuel, 2000, 79(8): 945-953. DOI: 10.1016/S0016-2361(99)00212-4.
|
[17] |
SI J P, LIU X, XU M H, et al. Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114(C): 434-444. DOI: 10.1016/j.apenergy.2013.10.002.
|
[18] |
贲宇恒, 李贺, 关毅, 等. 高比表面改性高岭土材料制备及其吸附性能研究[J]. 非金属矿, 2006, 29(2): 15-17. DOI: 10.3969/j.issn. 1000-8098.2006.02.006. BEN Y H, LI H, GUAN Y, et al. Research on structure & absorption performance of modified kaolin material with large surface area[J]. Non-Metallic Mines, 2006, 29(2): 15-17. DOI: 10.3969/j.issn. 1000-8098. 2006.02.006.
|
[19] |
王玉飞. 高岭土酸碱改性的过程分析及吸油性能研究[D]. 呼和浩特: 内蒙古工业大学, 2010. WANG Y F. Study on process analysis and oil absorptive properties of kaolin modified by acid and alkali[D]. Hohhot: Inner Mongol University of Technology, 2010.
|
[20] |
WANG C, LIU X W, LI D, et al. Effect of H2O and SO2 on the distribution characteristics of trace elements in particulate matter at high temperature under oxy-fuel combustion[J]. International Journal of Greenhouse Gas Control, 2014, 23: 51-60. DOI: 10.1016/j. ijggc.2014.01.012.
|
[21] |
YU D X, XU M H, YAO H, et al. A new method for identifying the modes of particulate matter from pulverized coal combustion[J]. Powder Technology, 2008, 183(1): 105-114. DOI: 10.1016/j.powtec. 2007.11.011.
|
[22] |
JIANG M Q, WANG Q P, JIN X Y, et al. Removal of Pb (Ⅱ) from aqueous solution using modified and unmodified kaolinite clay[J]. Journal of Hazardous Materials, 2009, 170(1): 332-339. DOI: 10.1016/j.jhazmat.2009.04.092.
|