CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4134-4145.DOI: 10.11949/0438-1157.20201651
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiuchen MA1,2,3(),Feiyu YI1,3,Qiuli ZHANG1,3,Yu WANG1,2,3
Received:
2020-11-16
Revised:
2021-02-12
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jiuchen MA
马玖辰1,2,3(),易飞羽1,3,张秋丽1,3,王宇1,2,3
通讯作者:
马玖辰
作者简介:
马玖辰(1980—),男,博士,副教授,基金资助:
CLC Number:
Jiuchen MA, Feiyu YI, Qiuli ZHANG, Yu WANG. Heat transfer characteristics of coaxial tubes type deep borehole heat exchanger in water-rich geothermal reservoir[J]. CIESC Journal, 2021, 72(8): 4134-4145.
马玖辰, 易飞羽, 张秋丽, 王宇. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
Add to citation manager EndNote|Ris|BibTeX
典型参数 | 数值 |
---|---|
地埋管长度 H | 2000 m |
井孔直径D | 350 mm |
出液管外径 do | 140 mm |
出液管壁厚 bo | 14 mm |
进液管外径 di | 245 mm |
进液管壁厚 bi | 18 mm |
进液管壁热导率 λpi | 41 W/(m·K) |
出液管壁热导率 λpo | 0.42 W/(m·K) |
固井水泥热导率 λg | 2.8 W/(m·K) |
固井水泥体积比热容 ρgcg | 2.19×106 J/(m3·K) |
循环液热导率 λr | 0.65 W/(m·K) |
循环液体积比热容 cr ρr | 4.2×106 J/(m3·K) |
Table 1 Design parameters of the CXA-type DBHE
典型参数 | 数值 |
---|---|
地埋管长度 H | 2000 m |
井孔直径D | 350 mm |
出液管外径 do | 140 mm |
出液管壁厚 bo | 14 mm |
进液管外径 di | 245 mm |
进液管壁厚 bi | 18 mm |
进液管壁热导率 λpi | 41 W/(m·K) |
出液管壁热导率 λpo | 0.42 W/(m·K) |
固井水泥热导率 λg | 2.8 W/(m·K) |
固井水泥体积比热容 ρgcg | 2.19×106 J/(m3·K) |
循环液热导率 λr | 0.65 W/(m·K) |
循环液体积比热容 cr ρr | 4.2×106 J/(m3·K) |
地层 类型 | 岩性 构成 | 埋深 H/m | 水平渗透系数 KXY/(m/s) | 孔隙率 εs | 体积比热容 csρs/(J/(m3·K)) | 热导率λs/ (W/(m·K)) | 纵向热弥散度 αL/m | 横向热弥散度αT/m |
---|---|---|---|---|---|---|---|---|
第四系 | 黏土层 | 0~40 | 5.0×10-9 | 0.41 | 3.2×106 | 1.4 | 0.3 | 0.03 |
粉砂 | 40~200 | 4.2×10-9 | 0.38 | 2.4×106 | 1.9 | 1.0 | 0.1 | |
新近系 | 泥岩 | 200~660 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
泥岩/砂岩互层 | 660~1060 | 3.0×10-6 | 0.29 | 3.1×106 | 2.9 | 2.0 | 0.2 | |
奥陶系 | 石灰岩 | 1060~1780 | 2.0×10-5 | 0.28 | 3.0×106 | 2.8 | 5.0 | 0.5 |
寒武系 | 泥岩 | 1780~2000 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
Table 2 The stratigraphic type and the physical parameters of the underground rock-soil layers
地层 类型 | 岩性 构成 | 埋深 H/m | 水平渗透系数 KXY/(m/s) | 孔隙率 εs | 体积比热容 csρs/(J/(m3·K)) | 热导率λs/ (W/(m·K)) | 纵向热弥散度 αL/m | 横向热弥散度αT/m |
---|---|---|---|---|---|---|---|---|
第四系 | 黏土层 | 0~40 | 5.0×10-9 | 0.41 | 3.2×106 | 1.4 | 0.3 | 0.03 |
粉砂 | 40~200 | 4.2×10-9 | 0.38 | 2.4×106 | 1.9 | 1.0 | 0.1 | |
新近系 | 泥岩 | 200~660 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
泥岩/砂岩互层 | 660~1060 | 3.0×10-6 | 0.29 | 3.1×106 | 2.9 | 2.0 | 0.2 | |
奥陶系 | 石灰岩 | 1060~1780 | 2.0×10-5 | 0.28 | 3.0×106 | 2.8 | 5.0 | 0.5 |
寒武系 | 泥岩 | 1780~2000 | 4.2×10-8 | 0.31 | 2.0×106 | 2. 7 | 2.0 | 0.2 |
达西流速uf/ (m/s) | 进水管垂向温升/ (℃/100 m) | 出水管垂向温降/ (℃/100 m) | ||
---|---|---|---|---|
10 d | 120 d | 10 d | 120 d | |
0 | 0.73 | 0.61 | 0.41 | 0.37 |
1×10-6 | 0.84 | 0.73 | 0.43 | 0.38 |
5×10-6 | 0.92 | 0.82 | 0.44 | 0.40 |
Table 3 The temperature changing rate in the inlet (outlet) pipe of the DBHE
达西流速uf/ (m/s) | 进水管垂向温升/ (℃/100 m) | 出水管垂向温降/ (℃/100 m) | ||
---|---|---|---|---|
10 d | 120 d | 10 d | 120 d | |
0 | 0.73 | 0.61 | 0.41 | 0.37 |
1×10-6 | 0.84 | 0.73 | 0.43 | 0.38 |
5×10-6 | 0.92 | 0.82 | 0.44 | 0.40 |
1 | 自然资源部中国地质调查局, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018. |
China Geological Survey of Natural Resources Ministry, et a1. China Geological Energy Development Report(2018) [M]. Beijing: China Petrochemical Press, 2018. | |
2 | 水电水利规划设计总院. 中国可再生能源发展报告2019[M]. 北京: 中国水利水电出版社, 2020. |
China Renewable Energy Engineering Institute. China Renewable Energy Development [M]. Beijing: China Water Power Press, 2020. | |
3 | 国家发展与改革委员会能源研究所, 等. 中国可再生能源展望2019 [M]. 北京: 科学出版社, 2020. |
National Development and Reform Commission Energy Reform Institute, et al. China Renewable Energy Outlook 2019 [M]. Beijing: Science Press, 2020. | |
4 | Zhao Y Z, Ma Z B, Pang Z H. A fast simulation approach to the thermal recovery characteristics of deep borehole heat exchanger after heat extraction[J]. Sustainability, 2020, 12(5): 2021. |
5 | Luo Y Q, Yu J H, Yan T, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 109829. |
6 | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752. |
Kong Y L, Chen C F, Shao H B, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752. | |
7 | 孔彦龙, 黄永辉, 郑天元, 等. 地热能可持续开发利用的数值模拟软件OpenGeoSys: 原理与应用[J]. 地学前缘, 2020, 27(1): 170-177. |
Kong Y L, Huang Y H, Zheng T Y, et al. Principle and application of OpenGeoSys for geothermal energy sustainable utilization[J]. Earth Science Frontiers, 2020, 27(1): 170-177. | |
8 | Chen C F, Shao H B, Naumov D, et al. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal Energy, 2019, 7(1): 1-26. |
9 | Beier R A. Thermal response tests on deep borehole heat exchangers with geothermal gradient[J]. Applied Thermal Engineering, 2020, 178: 115447. |
10 | 卜宪标, 冉运敏, 王令宝, 等. 单井地热供暖关键因素分析[J]. 浙江大学学报(工学版), 2019, 53(5): 957-964. |
Bu X B, Ran Y M, Wang L B, et al. Analysis of key factors affecting single well geothermal heating[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(5): 957-964. | |
11 | 卜宪标, 蒋坤卿. 地热单井连续和间歇供暖性能[J]. 中国科学: 技术科学, 2019, 49(12): 1514-1522. |
Bu X B, Jiang K Q. Performance of a geothermal single well for continuous and intermittent heating[J]. Scientia Sinica (Technologica), 2019, 49(12): 1514-1522. | |
12 | 冉运敏, 卜宪标. 保温对地热单井换热性能的影响分析[J]. 化工学报, 2019, 70(11): 4191-4198. |
Ran Y M, Bu X B. Influence analysis of insulation on performance of single well geothermal heating system[J]. CIESC Journal, 2019, 70(11): 4191-4198. | |
13 | Bu X B, Ran Y M, Zhang D D. Experimental and simulation studies of geothermal single well for building heating[J]. Renewable Energy, 2019, 143: 1902-1909. |
14 | Wang Z H, Wang F H, Liu J, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
15 | Liu J, Wang F H, Cai W L, et al. Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger[J]. International Journal of Energy Research, 2019, 43(12): 6337-6352. |
16 | Cai W L, Wang F H, Liu J, et al. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems[J]. Applied Thermal Engineering, 2019, 149: 975-986. |
17 | Fang L, Diao N R, Shao Z K, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88. |
18 | 方亮. 地源热泵系统中深层地埋管换热器的传热分析及其应用[D]. 济南: 山东建筑大学, 2018. |
Fang L. Heat transfer analysis and application of deep borehole heat exchanger in ground source heat pump systems[D]. Jinan: Shandong Jianzhu University, 2018. | |
19 | Fang L, Diao N R, Shao Z K, et al. Study on thermal resistance of coaxial tube boreholes in ground-coupled heat pump systems[J]. Procedia Engineering, 2017, 205: 3735-3742. |
20 | Śliwa T, Kruszewski M, Zare A, et al. Potential application of vacuum insulated tubing for deep borehole heat exchangers[J]. Geothermics, 2018, 75: 58-67. |
21 | 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. |
Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. | |
22 | 关锌. 地热资源经济评价方法与应用研究[D]. 武汉: 中国地质大学, 2014. |
Guan X. Study on method and application of economic evaluation of geothermal resources[D]. Wuhan: ChinaUniversity of Geosciences, 2014. | |
23 | Cui Y L, Zhu J, Twaha S, et al. A comprehensive review on 2D and 3D models of vertical ground heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 84-114. |
24 | Pan A Q, Lu L, Cui P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065. |
25 | Casasso A, Sethi R. Efficiency of closed loop geothermal heat pumps: a sensitivity analysis[J]. Renewable Energy, 2014, 62: 737-746. |
26 | 马玖辰, 邵刚, 王宇, 等. 抽-灌井分布模式对地埋管换热器井群传热特性的影响[J]. 应用基础与工程科学学报, 2019, 27(5): 1158-1171. |
Ma J C, Shao G, Wang Y, et al. Influence of the distribution of pumping and injection wells on heat transfer characteristic of borehole heat exchangers[J]. Journal of Basic Science and Engineering, 2019, 27(5): 1158-1171. | |
27 | Casasso A, Sethi R. Efficiency of closed loop geothermal heat pumps: a sensitivity analysis[J]. Renewable Energy, 2014, 62: 737-746. |
28 | Molina-Giraldo N, Blum P, Zhu K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection[J]. International Journal of Thermal Sciences, 2011, 50(12): 2506-2513. |
29 | Zhang W K, Yang H X, Diao N R, et al. Exploration on the reverse calculation method of groundwater velocity by means of the moving line heat source[J]. International Journal of Thermal Sciences, 2016, 99: 52-63. |
30 | Holmberg H, Acuña J, Næss E, et al. Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable Energy, 2016, 97: 65-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||