CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4155-4165.DOI: 10.11949/0438-1157.20201652
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhenxing SONG(),Xianbao CUI(
),Ying ZHANG,Xuemei ZHANG,Jie HE,Tianyang FENG,Jixiao WANG
Received:
2020-11-16
Revised:
2021-01-20
Online:
2021-08-05
Published:
2021-08-05
Contact:
Xianbao CUI
通讯作者:
崔现宝
作者简介:
宋振兴(1996—),男,硕士研究生,基金资助:
CLC Number:
Zhenxing SONG, Xianbao CUI, Ying ZHANG, Xuemei ZHANG, Jie HE, Tianyang FENG, Jixiao WANG. Synthesis of n-hexyl acetate via reactive distillation catalyzed by mixed ionic liquids[J]. CIESC Journal, 2021, 72(8): 4155-4165.
宋振兴, 崔现宝, 张缨, 张雪梅, 何杰, 冯天扬, 王纪孝. 混合离子液体催化反应精馏合成乙酸正己酯[J]. 化工学报, 2021, 72(8): 4155-4165.
试剂名称 | 纯度/% | 供应商 |
---|---|---|
乙酸甲酯(MeOAC) | 99.0 | 上海阿拉丁生化科技股份有限公司 |
甲醇(MeOH) | 99.8 | 凯玛特化工科技有限公司 |
正己醇(HeOH) | 99.8 | 凯玛特化工科技有限公司 |
乙酸正己酯(HeAC) | 99.0 | 上海麦克林生化科技有限公司 |
1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐([PSO3HMIm][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑硫酸氢盐([BSO3HMIm][HSO4]) | 99.0 | 兰州奥力科化工有限公司 |
N-丁基磺酸吡啶三氟甲烷磺酸盐([BSO3HPy][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑三氟甲烷磺酸盐([BSO3HMIm][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑盐酸盐([BSO3HMIm][Cl]) | 99.0 | 兰州奥力科化工有限公司 |
1-辛基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐([OMMIm][Tf2N]) | 99.0 | 兰州奥力科化工有限公司 |
Table 1 The reagents used in experiment
试剂名称 | 纯度/% | 供应商 |
---|---|---|
乙酸甲酯(MeOAC) | 99.0 | 上海阿拉丁生化科技股份有限公司 |
甲醇(MeOH) | 99.8 | 凯玛特化工科技有限公司 |
正己醇(HeOH) | 99.8 | 凯玛特化工科技有限公司 |
乙酸正己酯(HeAC) | 99.0 | 上海麦克林生化科技有限公司 |
1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐([PSO3HMIm][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑硫酸氢盐([BSO3HMIm][HSO4]) | 99.0 | 兰州奥力科化工有限公司 |
N-丁基磺酸吡啶三氟甲烷磺酸盐([BSO3HPy][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑三氟甲烷磺酸盐([BSO3HMIm][OTf]) | 99.0 | 兰州奥力科化工有限公司 |
1-丁基磺酸-3-甲基咪唑盐酸盐([BSO3HMIm][Cl]) | 99.0 | 兰州奥力科化工有限公司 |
1-辛基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐([OMMIm][Tf2N]) | 99.0 | 兰州奥力科化工有限公司 |
i | j | Bij/K | Bji/K | αij |
---|---|---|---|---|
乙酸甲酯 | 甲醇 | 214.419 | 139.516 | 0.3 |
乙酸甲酯 | 正己醇 | 522.257 | -222.8145 | 0.3 |
乙酸甲酯 | 乙酸正己酯 | 499 | -336.127 | 0.3 |
甲醇 | 正己醇 | 516.202 | -301.081 | 0.3364 |
甲醇 | 乙酸正己酯 | 101.869 | 180.573 | 0.3 |
正己醇 | 乙酸正己酯 | -144.421 | 354.82 | 0.3 |
乙酸甲酯 | [PSO3HMIm] [OTf] | 5360.95 | -3043.333 | 0.2 |
乙酸甲酯 | [OMMIm][Tf2N] | 9079.14 | -536.9 | 0.3 |
甲醇 | [PSO3HMIm] [OTf] | 1676.0488 | -2365.70732 | 0.3 |
甲醇 | [OMMIm][Tf2N] | -301.5 | 6230.09 | 0.3 |
正己醇 | [PSO3HMIm] [OTf] | -855.274 | -1808.009 | 0.2 |
正己醇 | [OMMIm][Tf2N] | -4.3407 | -1432.65 | 0.3 |
乙酸正己酯 | [PSO3HMIm] [OTf] | 1723.06632 | -1685.6435 | 0.2 |
乙酸正己酯 | [OMMIm][Tf2N] | 610.14752 | -1299.8232 | 0.3 |
[PSO3HMIm] [OTf] | [OMMIm][Tf2N] | 2256.214 | 1710.3584 | 0.3 |
Table 2 NRTL model parameters
i | j | Bij/K | Bji/K | αij |
---|---|---|---|---|
乙酸甲酯 | 甲醇 | 214.419 | 139.516 | 0.3 |
乙酸甲酯 | 正己醇 | 522.257 | -222.8145 | 0.3 |
乙酸甲酯 | 乙酸正己酯 | 499 | -336.127 | 0.3 |
甲醇 | 正己醇 | 516.202 | -301.081 | 0.3364 |
甲醇 | 乙酸正己酯 | 101.869 | 180.573 | 0.3 |
正己醇 | 乙酸正己酯 | -144.421 | 354.82 | 0.3 |
乙酸甲酯 | [PSO3HMIm] [OTf] | 5360.95 | -3043.333 | 0.2 |
乙酸甲酯 | [OMMIm][Tf2N] | 9079.14 | -536.9 | 0.3 |
甲醇 | [PSO3HMIm] [OTf] | 1676.0488 | -2365.70732 | 0.3 |
甲醇 | [OMMIm][Tf2N] | -301.5 | 6230.09 | 0.3 |
正己醇 | [PSO3HMIm] [OTf] | -855.274 | -1808.009 | 0.2 |
正己醇 | [OMMIm][Tf2N] | -4.3407 | -1432.65 | 0.3 |
乙酸正己酯 | [PSO3HMIm] [OTf] | 1723.06632 | -1685.6435 | 0.2 |
乙酸正己酯 | [OMMIm][Tf2N] | 610.14752 | -1299.8232 | 0.3 |
[PSO3HMIm] [OTf] | [OMMIm][Tf2N] | 2256.214 | 1710.3584 | 0.3 |
组分 | ΔfH0/(kJ/mol) | Δr | Δr |
---|---|---|---|
乙酸甲酯 | -411.9 | 5.2 | 7.67 |
正己醇 | -320.5 | ||
甲醇 | -200.9 | ||
乙酸正己酯 | -526.3 |
Table 3 Calculation results of standard reaction enthalpy
组分 | ΔfH0/(kJ/mol) | Δr | Δr |
---|---|---|---|
乙酸甲酯 | -411.9 | 5.2 | 7.67 |
正己醇 | -320.5 | ||
甲醇 | -200.9 | ||
乙酸正己酯 | -526.3 |
离子液体进料位置 | 正己醇 进料位置 | 乙酸甲酯混合物进料位置 | 反应段进料间隔板数 | 收率 | 乙酸正己酯纯度 |
---|---|---|---|---|---|
5 | 30 | 50 | 20 | 0.9180 | 0.9242 |
5 | 24 | 50 | 26 | 0.9454 | 0.9497 |
5 | 20 | 50 | 30 | 0.9617 | 0.9648 |
5 | 15 | 50 | 35 | 0.9672 | 0.9711 |
15 | 15 | 50 | 35 | 0.9669 | 0.9702 |
5 | 10 | 50 | 40 | 0.9783 | 0.9809 |
10 | 10 | 50 | 40 | 0.9788 | 0.9811 |
5 | 6 | 46 | 40 | 0.9636 | 0.9688 |
5 | 8 | 48 | 40 | 0.9710 | 0.9746 |
5 | 10 | 50 | 40 | 0.9783 | 0.9809 |
5 | 12 | 52 | 40 | 0.9619 | 0.9650 |
Table 4 The effect of feeding position and number of spacer plates
离子液体进料位置 | 正己醇 进料位置 | 乙酸甲酯混合物进料位置 | 反应段进料间隔板数 | 收率 | 乙酸正己酯纯度 |
---|---|---|---|---|---|
5 | 30 | 50 | 20 | 0.9180 | 0.9242 |
5 | 24 | 50 | 26 | 0.9454 | 0.9497 |
5 | 20 | 50 | 30 | 0.9617 | 0.9648 |
5 | 15 | 50 | 35 | 0.9672 | 0.9711 |
15 | 15 | 50 | 35 | 0.9669 | 0.9702 |
5 | 10 | 50 | 40 | 0.9783 | 0.9809 |
10 | 10 | 50 | 40 | 0.9788 | 0.9811 |
5 | 6 | 46 | 40 | 0.9636 | 0.9688 |
5 | 8 | 48 | 40 | 0.9710 | 0.9746 |
5 | 10 | 50 | 40 | 0.9783 | 0.9809 |
5 | 12 | 52 | 40 | 0.9619 | 0.9650 |
1 | 揭会民, 崔现宝, 彭艳枚, 等. 离子液体反应萃取精馏合成乙酸乙酯[J]. 化工学报, 2016, 67(2): 606-613. |
Jie H M, Cui X B, Peng Y M, et al. Synthesis of ethyl acetate via reactive and extractive distillation column using ionic liquids as catalyst and entrainer[J]. CIESC Journal, 2016, 67(2): 606-613. | |
2 | 袁骏. 乙酸甲酯水解的工艺[J]. 化工进展, 2012, 31(S2): 265-270. |
Yuan J. Advances in hydrolysis of methyl acetate[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 265-270. | |
3 | 李柏春, 耿春霞, 张文林, 等. 酯交换法制备乙酸正丁酯动力学研究[J]. 化学工程, 2016, 44(4): 59-63. |
Li B C, Geng C X, Zhang W L, et al. Kinetics of n-butyl acetate prepared by trans-esterification[J]. Chemical Engineering (China), 2016, 44(4): 59-63. | |
4 | Liu Y, Wei M, Gao L, et al. Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins[J]. Korean Journal of Chemical Engineering, 2013, 30(5): 1039-1042. |
5 | Sert E, Atalay F S. Determination of adsorption and kinetic parameters for transesterification of methyl acetate with hexanol catalyzed by ion exchange resin[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6350-6355. |
6 | Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions[J]. Chemical Reviews, 1998, 98(1): 171-198. |
7 | Bożek-Winkler E, Gmehling J. Transesterification of methyl acetate and n-butanol catalyzed by amberlyst 15[J]. Industrial & Engineering Chemistry Research, 2006, 45(20): 6648-6654. |
8 | Jiménez L, Garvín A, Costa-López J. The production of butyl acetate and methanol via reactive and extractive distillation(Ⅰ): Chemical equilibrium, kinetics, and mass-transfer issues[J]. Industrial & Engineering Chemistry Research, 2002, 41(26): 6663-6669. |
9 | Jermy B R, Pandurangan A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 146-154. |
10 | Pappu V K S, Yanez A J, Peereboom L, et al. A kinetic model of the Amberlyst-15 catalyzed transesterification of methyl stearate with n-butanol[J]. Bioresource Technology, 2011, 102(5): 4270-4272. |
11 | Xiao Y, Cai W F, Sun H L, et al. Kinetics study and process simulation of transesterification of ethylene glycol with methyl acetate for ethylene glycol diacetate[J]. The Canadian Journal of Chemical Engineering, 2018, 96(3): 722-730. |
12 | Yang Z, Cui X B, Jie H M, et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1204-1215. |
13 | 梁晓通, 李国兵, 沈京华, 等. 离子液体一步法催化合成4-乙酰胺基苯亚磺酸[J]. 化学工业与工程, 2020, 37(4): 7-14. |
Liang X T, Li G B, Shen J H, et al. Catalytic synthesis of 4-acetamidobenzenesulfinic acid by ionic liquids in one step[J]. Chemical Industry and Engineering, 2020, 37(4): 7-14. | |
14 | Zhang P B, Liu H, Fan M M, et al. A review on biodiesel production by transesterification catalyzed by ionic liquid catalysts[J]. Current Organic Chemistry, 2016, 20(7): 752-760. |
15 | Deshmukh K M, Qureshi Z S, Dhake K P, et al. Transesterification of dimethyl carbonate with phenol using Brønsted and Lewis acidic ionic liquids[J]. Catalysis Communications, 2010, 12(3): 207-211. |
16 | Niedermeyer H, Hallett J P, Villar-Garcia I J, et al. Mixtures of ionic liquids[J]. Chemical Society Reviews, 2012, 41(23): 7780-7802. |
17 | Chatel G, Pereira J F B, Debbeti V, et al. Mixing ionic liquids — “simple mixtures” or “double salts”?[J]. Green Chemistry, 2014, 16(4): 2051-2083. |
18 | Annat G, Forsyth M, MacFarlane D R. Ionic liquid mixtures—variations in physical properties and their origins in molecular structure[J]. The Journal of Physical Chemistry B, 2012, 116(28): 8251-8258. |
19 | Baltazar Q Q, Leininger S K, Anderson J L. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds[J]. Journal of Chromatography A, 2008, 1182(1): 119-127. |
20 | Clough M T, Crick C R, Gräsvik J, et al. A physicochemical investigation of ionic liquid mixtures[J]. Chemical Science, 2015, 6(2): 1101-1114. |
21 | D'Anna F, Marullo S, Vitale P, et al. Binary mixtures of ionic liquids: a joint approach to investigate their properties and catalytic ability[J]. Chem Phys Chem, 2012, 13(7): 1877-1884. |
22 | Fox E T, Weaver J E F, Henderson W A. Tuning binary ionic liquid mixtures: linking alkyl chain length to phase behavior and ionic conductivity[J]. The Journal of Physical Chemistry C, 2012, 116(8): 5270-5274. |
23 | Larriba M, de Riva J, Navarro P, et al. COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf2] + [emim][DCA]} ionic liquid mixture[J]. Separation and Purification Technology, 2018, 190: 211-227. |
24 | Taige M, Hilbert D, Schubert T J S. Mixtures of ionic liquids as possible electrolytes for lithium ion batteries[J]. Zeitschrift Für Physikalische Chemie, 2012, 226(2): 129-139. |
25 | Yang Z, Cui X B, Yu X F, et al. Transesterification of methyl acetate with n-butanol catalyzed by single and mixed ionic liquids[J]. Catalysis Letters, 2015, 145(6): 1281-1289. |
26 | Peng X, Wang L K. Design and control of ionic liquid-catalyzed reactive distillation for n-butyl acetate production[J]. Chemical Engineering & Technology, 2015, 38(2): 223-234. |
27 | Zhang Z S, Wang C, Guang C, et al. Cost-saving and control investigation for isopentyl acetate ionic liquid catalyzed synthesis through conventional and dividing-wall reactive distillation[J]. Process Safety and Environmental Protection, 2019, 129: 89-102. |
28 | Yang J B, Cai D R, Zeng T, et al. Application of Brönsted acid ionic liquids as green catalyst in the synthesis of 2-propanol with reactive distillation[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1561-1569. |
29 | Amarasekara A S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183. |
30 | Sarma P, Dutta A K, Borah R. Design and exploration of —SO3H group functionalized Brønsted acidic ionic liquids (BAILs) as task-specific catalytic systems for organic reactions: a review of literature[J]. Catalysis Surveys from Asia, 2017, 21(2): 70-93. |
31 | Zhang Q Q, Cui X B, Feng T Y, et al. Hydrolysis of methyl acetate using ionic liquids as catalyst and solvent[J]. Molecular Catalysis, 2020, 484: 110785. |
32 | Ni L L, Xin J Y, Jiang K, et al. One-step conversion of biomass-derived furanics into aromatics by Brønsted acid ionic liquids at room temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2541-2551. |
33 | Cui X, Zhang S, Shi F, et al. The influence of the acidity of ionic liquids on catalysis[J]. Chem Sus Chem, 2010, 3(9): 1043-1047. |
34 | He W S, Li L L, Huang Q J, et al. Highly efficient synthesis of phytosterol linolenate in the presence of Bronsted acidic ionic liquid[J]. Food Chemistry, 2018, 263: 1-7. |
35 | Krasovskiy V G, Chernikova E A, Glukhov L M, et al. Effect of hydroxyl groups in a cation structure on the properties of ionic liquids[J]. Russian Journal of Physical Chemistry A, 2018, 92(12): 2379-2385. |
36 | He R N, Zou Y, Dong Y B, et al. Kinetic study and process simulation of esterification of acetic acid and ethanol catalyzed by [HSO3-bmim][HSO4][J]. Chemical Engineering Research and Design, 2018, 137: 235-245. |
37 | Amarasekara A S, Owereh O S. Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids[J]. Journal of Thermal Analysis and Calorimetry, 2011, 103(3): 1027-1030. |
38 | Shang W Y, Cui X B, Yu X F, et al. Isobaric vapor-liquid equilibrium for methanol + methyl acetate with ionic liquids [OMMIM][Tf2N] and [OMIM][Tf2N] as entrainers at 101.3 kPa[J]. Fluid Phase Equilibria, 2018, 473: 90-97. |
39 | Athès V, Paricaud P, Ellaite M, et al. Vapour-liquid equilibria of aroma compounds in hydroalcoholic solutions: measurements with a recirculation method and modelling with the NRTL and COSMO-SAC approaches[J]. Fluid Phase Equilibria, 2008, 265(1/2): 139-154. |
40 | Dell'Era C, Pokki J P, Uusi-Kyyny P, et al. Vapour-liquid equilibrium for the systems diethyl sulphide + 1-butene, +cis-2-butene, +2-methylpropane, +2-methylpropene, +n-butane, +trans-2-butene[J]. Fluid Phase Equilibria, 2010, 291(2): 180-187. |
41 | Fang J, Zhao R, Su W Y, et al. A molecular design method based on the COSMO-SAC model for solvent selection in ionic liquid extractive distillation[J]. AIChE Journal, 2016, 62(8): 2853-2869. |
42 | Wang H X, Wu C M, Bu X W, et al. A benign preparation of sec-butanol via transesterification from sec-butyl acetate using the acidic imidazolium ionic liquids as catalysts[J]. Chemical Engineering Journal, 2014, 246: 366-372. |
43 | Peng Y M, Cui X B, Zhang Y, et al. Kinetics of transesterification of methyl acetate and ethanol catalyzed by ionic liquid[J]. International Journal of Chemical Kinetics, 2014, 46(2): 116-125. |
44 | Suo X M, Ye Q, Li R, et al. Investigation about energy saving for synthesis of isobutyl acetate in the reactive dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2017, 56(19): 5607-5617. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[10] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[13] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[14] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[15] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||