CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4081-4092.DOI: 10.11949/0438-1157.20201737
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yeming ZHU1(),Jinping LIU1,2,Xiongwen XU1,2(),Dandan ZHU1
Received:
2020-12-03
Revised:
2021-01-22
Online:
2021-08-05
Published:
2021-08-05
Contact:
Xiongwen XU
通讯作者:
许雄文
作者简介:
朱业铭(1996—),男,硕士研究生,基金资助:
CLC Number:
Yeming ZHU, Jinping LIU, Xiongwen XU, Dandan ZHU. Research on liquid film flow characteristics of vertical porous plate[J]. CIESC Journal, 2021, 72(8): 4081-4092.
朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092.
Add to citation manager EndNote|Ris|BibTeX
Zone name | Boundary conditions |
---|---|
inlet | velocity-inlet(UDF, Nusselt velocity distribution) |
outlet | pressure-outlet (0 Pa) |
top | symmetry |
plate | no-slip wall with contact angle |
side | no-slip wall with contact angle |
hole | symmetry |
Table 1 Model boundary conditions
Zone name | Boundary conditions |
---|---|
inlet | velocity-inlet(UDF, Nusselt velocity distribution) |
outlet | pressure-outlet (0 Pa) |
top | symmetry |
plate | no-slip wall with contact angle |
side | no-slip wall with contact angle |
hole | symmetry |
光板 | H=0.25 mm) 多孔板,(D=1 mm,S=1 mm, | ||||
---|---|---|---|---|---|
网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 | 网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 |
5.2 | 0.1 | 0.35 | 43 | 0.0029 | 0.082 |
11.8 | 0.022 | 0.16 | 91 | 0.0013 | 0.058 |
22.5 | 0.016 | 0.12 | 143 | 0.0004 | 0.056 |
55.7 | 0.0065 | 0.065 | 200 | 0.0004 | 0.04 |
Table 2 Mesh size of nonporous and porous plates
光板 | H=0.25 mm) 多孔板,(D=1 mm,S=1 mm, | ||||
---|---|---|---|---|---|
网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 | 网格数/万 | 最小网格 体积/mm3 | 最大网格 体积/mm3 |
5.2 | 0.1 | 0.35 | 43 | 0.0029 | 0.082 |
11.8 | 0.022 | 0.16 | 91 | 0.0013 | 0.058 |
22.5 | 0.016 | 0.12 | 143 | 0.0004 | 0.056 |
55.7 | 0.0065 | 0.065 | 200 | 0.0004 | 0.04 |
1 | Sebastia-Saez D, Gu S, Ranganathan P, et al. 3D modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements[J]. International Journal of Greenhouse Gas Control, 2013, 19: 492-502. |
2 | Sun B, He L, Liu B T, et al. A new multi-scale model based on CFD and macroscopic calculation for corrugated structured packing column[J]. AIChE Journal, 2013, 59(8): 3119-3130. |
3 | Chen J B, Liu C J, Yuan X G, et al. CFD simulation of flow and mass transfer in structured packing distillation columns[J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 381-388. |
4 | Isoz M, Haidl J. Computational-fluid-dynamics analysis of gas flow through corrugated-sheet-structured packing: effects of packing geometry[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11785-11796. |
5 | Amini Y, Karimi-Sabet J, Nasr Esfahany M. Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 35-43. |
6 | Raynal L, Ben Rayana F, Royon-Lebeaud A. Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale[J]. Energy Procedia, 2009, 1(1): 917-924. |
7 | 许媛媛. 多相液膜流动的计算流体力学建模与验证[D]. 上海: 上海交通大学, 2010. |
Xu Y Y. Computational fluid dynamics modeling and validation toportray the liquid flow behavior for multiphase[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
8 | 吴思其. 规整填料片上气液两相流动及传质特性研究[D]. 杭州: 浙江大学, 2017. |
Wu S Q. Research on gas-liquid film flow characteristics and mass transfer characteristics of corrugation packing surface[D]. Hangzhou: Zhejiang University, 2017. | |
9 | Nosoko T, Yoshimura P N, Nagata T, et al. Characteristics of two-dimensional waves on a falling liquid film[J]. Chemical Engineering Science, 1996, 51(5): 725-732. |
10 | Milan M, Borhani N, Thome J R. Adiabatic vertical downward air-water flow pattern map: influence of inlet device, flow development length and hysteresis effects[J]. International Journal of Multiphase Flow, 2013, 56: 126-137. |
11 | Hoffmann A, Ausner I, Repke J U, et al. Fluid dynamics in multiphase distillation processes in packed towers[J]. Computer Aided Chemical Engineering, 2004, 18: 199-204. |
12 | Singh R K, Galvin J E, Sun X. Three-dimensional simulation of rivulet and film flows over an inclined plate: effects of solvent properties and contact angle[J]. Chemical Engineering Science, 2016, 142: 244-257. |
13 | Singh R K, Galvin J E, Whyatt G A, et al. Breakup of a liquid rivulet falling over an inclined plate: identification of a critical Weber number[J]. Physics of Fluids, 2017, 29(5): 052101. |
14 | Iso Y, Chen X. Flow transition behavior of the wetting flow between the film flow and rivulet flow on an inclined wall[J]. Journal of Fluids Engineering, 2011, 133(9): 091101. |
15 | Trifonov Y Y. Counter-current gas-liquid flow between vertical corrugated plates[J]. Chemical Engineering Science, 2011, 66(20): 4851-4866. |
16 | Tong Z Y, Hong W R, Marek A, et al. Effect of triangular corrugations on dynamic characteristics of film flow[J]. Procedia Engineering, 2012, 42: 540-554. |
17 | Tong Z Y, Marek A, Hong W R, et al. Experimental and numerical investigation on gravity-driven film flow over triangular corrugations[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15946-15958. |
18 | Li J, Guo Y Q, Tong Z Y, et al. Comparative study on the characteristics of film flow with different corrugation plates[J]. Microgravity Science and Technology, 2015, 27(3): 171-179. |
19 | Sebastia-Saez D, Gu S, Ranganathan P, et al. Micro-scale CFD modeling of reactive mass transfer in falling liquid films within structured packing materials[J]. International Journal of Greenhouse Gas Control, 2015, 33: 40-50. |
20 | Xu Y Y, Yuan J Q, Repke J U, et al. CFD study on liquid flow behavior on inclined flat plate focusing on effect of flow rate[J]. Engineering Applications of Computational Fluid Mechanics, 2012, 6(2): 186-194. |
21 | Xu Y Y, Zhao M, Paschke S, et al. Detailed investigations of the countercurrent multiphase (gas-liquid and gas-liquid-liquid) flow behavior by three-dimensional computational fluid dynamics simulations[J]. Industrial & Engineering Chemistry Research, 2014, 53(18): 7797-7809. |
22 | Zhu M, Liu C J, Zhang W W, et al. Transport phenomena of falling liquid film flow on a plate with rectangular holes[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11724-11731. |
23 | Liu B T, Wen Y T, Liu C J, et al. Multiscale calculation on perforated sheet structured packing to predict the liquid distribution based on computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7810-7818. |
24 | Subramanian K, Wozny G. Analysis of hydrodynamics of fluid flow on corrugated sheets of packing[J]. International Journal of Chemical Engineering, 2012, 2012: 1-13. |
25 | Kolev N, Kralev B, Kolev D. Gas side controlled mass transfer in a new packing with stamped horizontal lamellae operating at extremely low liquid loads[J]. Chemical Engineering and Processing: Process Intensification, 2013, 63: 44-49. |
26 | Fair J R, Seibert A F, Behrens M, et al. Structured packing PerformanceExperimental evaluation of two predictive models[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1788-1796. |
27 | Hu J G, Liu J T, Yu J G, et al. CO2 absorption into highly concentrated DEA solution flowing over a vertical plate with rectangular windows[J]. International Journal of Greenhouse Gas Control, 2013, 19: 13-18. |
28 | 胡剑光, 刘佳特, 袁猛, 等. 新型垂直板规整填料流体力学及传质性能[J]. 化工学报, 2014, 65(1): 116-122. |
Hu J G, Liu J T, Yuan M, et al. Hydrodynamics and mass transfer characteristics of a novel vertical-sheet structured packing[J]. CIESC Journal, 2014, 65(1): 116-122. | |
29 | Hu J G, Yang X G, Yu J G, et al. Numerical investigation on hydrodynamics of vertically confined free film[J]. The Canadian Journal of Chemical Engineering, 2016, 94(2): 340-348. |
30 | Hu J G, Yang X G, Yu J G, et al. Carbon dioxide (CO2) absorption and interfacial mass transfer across vertically confined free liquid film-a numerical investigation[J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 46-56. |
31 | Maiti R N, Arora R, Khanna R, et al. The liquid spreading on porous solids: Dual action of pores[J]. Chemical Engineering Science, 2005, 60(22): 6235-6239. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[3] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[4] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[5] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[6] | Jia LUO, Shuangying WU, Lan XIAO, Shiyao ZHOU, Zhili CHEN. Experiment on the effect of impact velocities on the local heat transfer characteristics for successive droplets impacting on heated cylindrical surface [J]. CIESC Journal, 2022, 73(7): 2944-2951. |
[7] | Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process [J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[8] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[9] | Yuhang ZHOU, Jianyi CHEN, Ya’an WANG, Dingyu ZHANG, Hongying MA, Song YE. Research on performance of dual-inlet gas-liquid cylindrical cyclone based on liquid film flow pattern [J]. CIESC Journal, 2022, 73(3): 1221-1231. |
[10] | Jingzhi ZHANG, Yuting ZHAO, Yingdi WANG, Jianhui QI, Li LEI. Experimental study on liquid-liquid two-phase flow pattern and flow characteristics in sinusoidal microchannels [J]. CIESC Journal, 2022, 73(3): 1111-1118. |
[11] | Yiran WANG, Chaoyang GUAN, Xiang GAO, Hongxia CHEN. Experimental study on boiling dynamics modulation by porous foam deaeration board [J]. CIESC Journal, 2022, 73(11): 4948-4956. |
[12] | Rui YANG, Baojin ZHU, Chao LYU, Lei ZHANG, Yingsong XIAO. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow [J]. CIESC Journal, 2022, 73(10): 4389-4398. |
[13] | Wei ZHAN, Xiyang LIU, Chunying ZHU, Youguang MA, Taotao FU. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels [J]. CIESC Journal, 2022, 73(1): 184-193. |
[14] | LIU Xianfei, WANG Heng, WANG Fang, LI Zhiqiang, ZHU Caixia, ZHANG Haofei. Uniformity of liquid film distribution in helical channel of single screw expander [J]. CIESC Journal, 2021, 72(S1): 336-341. |
[15] | CHEN Hongxia, LI Linhan, WANG Yiran, GUO Yuxiang, LIU Lin. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space [J]. CIESC Journal, 2021, 72(6): 3278-3287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||