CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4616-4628.DOI: 10.11949/0438-1157.20201949
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lanping ZHAO1(),Bentao GUO1,2,Zhigang YANG2
Received:
2021-01-03
Revised:
2021-05-13
Online:
2021-09-05
Published:
2021-09-05
Contact:
Lanping ZHAO
通讯作者:
赵兰萍
作者简介:
赵兰萍(1967—),女,博士,副教授, 基金资助:
CLC Number:
Lanping ZHAO, Bentao GUO, Zhigang YANG. Effect of structure on the performance of inner condenser for heat pump of EV[J]. CIESC Journal, 2021, 72(9): 4616-4628.
赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
Add to citation manager EndNote|Ris|BibTeX
项目 | 关联式 |
---|---|
空气侧传热及压降[ | |
制冷剂侧传热系数(单相)[ | |
制冷剂侧传热系数(两相)[ | |
制冷剂压降(单相)[ | Re<2000, |
Re>2000, | |
制冷剂压降(两相)[ | |
空泡系数[ | |
突扩压降(单相)[ | |
突缩压降(单相)[ | |
突缩压降(双相)[ | |
Table 1 Correlations of the model
项目 | 关联式 |
---|---|
空气侧传热及压降[ | |
制冷剂侧传热系数(单相)[ | |
制冷剂侧传热系数(两相)[ | |
制冷剂压降(单相)[ | Re<2000, |
Re>2000, | |
制冷剂压降(两相)[ | |
空泡系数[ | |
突扩压降(单相)[ | |
突缩压降(单相)[ | |
突缩压降(双相)[ | |
参数 | 单层 | 双层 |
---|---|---|
长×宽×厚/mm×mm×mm | 215×226×32 | 215×226×32 |
扁管宽度/mm | 25.4 | 12 |
微通道数 | 26 | 12 |
微通道宽×高/mm×mm | 0.7×0.6 | 0.7×0.6 |
扁管数 | 23 | 46 |
流程分布 | 15-8 | 12-11-11-12 |
百叶窗间距/mm | 1.1 | 1.1 |
百叶窗高度/mm | 6.7 | 6.7 |
百叶窗角度/(°) | 27 | 27 |
Table 2 Structural parameters of the condensers
参数 | 单层 | 双层 |
---|---|---|
长×宽×厚/mm×mm×mm | 215×226×32 | 215×226×32 |
扁管宽度/mm | 25.4 | 12 |
微通道数 | 26 | 12 |
微通道宽×高/mm×mm | 0.7×0.6 | 0.7×0.6 |
扁管数 | 23 | 46 |
流程分布 | 15-8 | 12-11-11-12 |
百叶窗间距/mm | 1.1 | 1.1 |
百叶窗高度/mm | 6.7 | 6.7 |
百叶窗角度/(°) | 27 | 27 |
测量项目 | 仪表设备 | 仪表精度 | 分辨率 |
---|---|---|---|
制冷剂温度 | 热电偶 | ±0.5℃ | <0.2℃ |
制冷剂压力 | 压力传感器 | 0.1% | <30 Pa |
空气温度 | PT100 | ±0.2℃ | <0.1℃ |
空气压差 | 微压差变送器 | >0.25% | <10 Pa |
大气压力 | 绝对压力变送器 | 0.1% | <30 Pa |
Table 3 Parameters of measuring instruments
测量项目 | 仪表设备 | 仪表精度 | 分辨率 |
---|---|---|---|
制冷剂温度 | 热电偶 | ±0.5℃ | <0.2℃ |
制冷剂压力 | 压力传感器 | 0.1% | <30 Pa |
空气温度 | PT100 | ±0.2℃ | <0.1℃ |
空气压差 | 微压差变送器 | >0.25% | <10 Pa |
大气压力 | 绝对压力变送器 | 0.1% | <30 Pa |
编号 | 扁管排布 |
---|---|
1 | 9-14-14-9 |
2 | 10-13-13-10 |
3 | 11-12-12-11 |
4 | 12-11-11-12 |
5 | 13-10-10-13 |
6 | 14-9-9-14 |
Table 4 Pass arrangement
编号 | 扁管排布 |
---|---|
1 | 9-14-14-9 |
2 | 10-13-13-10 |
3 | 11-12-12-11 |
4 | 12-11-11-12 |
5 | 13-10-10-13 |
6 | 14-9-9-14 |
性质 | R1234yf | R134a |
---|---|---|
液体动力黏度/(μPa·s) | 113.59 | 141.77 |
液体运动黏度/(cm2/s) | 0.0011469 | 0.0012861 |
蒸发潜热/(kJ/kg) | 122.13 | 151.81 |
液体密度/(kg/m3) | 990.38 | 1102.3 |
液体热导率/(mW/(m·K)) | 56.130 | 70.427 |
Table 5 Physical properties of the saturated state of R1234yf and R134a
性质 | R1234yf | R134a |
---|---|---|
液体动力黏度/(μPa·s) | 113.59 | 141.77 |
液体运动黏度/(cm2/s) | 0.0011469 | 0.0012861 |
蒸发潜热/(kJ/kg) | 122.13 | 151.81 |
液体密度/(kg/m3) | 990.38 | 1102.3 |
液体热导率/(mW/(m·K)) | 56.130 | 70.427 |
1 | 张皓, 赵家威, 施骏业, 等. 电动汽车热泵空调系统采暖性能的试验研究[J]. 制冷技术, 2017, 37(3): 39-42. |
Zhang H, Zhao J W, Shi J Y, et al. Experimental study on heating performance of heat pump air conditioning system for electric vehicles[J]. Chinese Journal of Refrigeration Technology, 2017, 37(3): 39-42. | |
2 | 赵宇, 嵇天炜, 瞿晓华, 等. 电动汽车热泵空调系统综述[J]. 制冷与空调, 2020, 20(7): 72-81. |
Zhao Y, Ji T W, Qu X H, et al. Review of heat pump system in electric vehicles[J]. Refrigeration and Air-Conditioning, 2020, 20(7): 72-81. | |
3 | Kim K Y, Kim S C, Kim M S. Experimental studies on the heating performance of the PTC heater and heat pump combined system in fuel cells and electric vehicles[J]. International Journal of Automotive Technology, 2012, 13(6): 971-977. |
4 | Feng L L, Hrnjak P. Experimental study of an air conditioning-heat pump system for electric vehicles[R]//SAE Technical Paper Series. SAE International, 2016. |
5 | Higuchi Y, Kobayashi H, Shan Z W, et al. Efficient heat pump system for PHEV/BEV[R]//SAE Technical Paper Series. SAE International, 2017. |
6 | Zhang Z Q, Wang D D, Zhang C Q, et al. Electric vehicle range extension strategies based on improved AC system in cold climate—a review[J]. International Journal of Refrigeration, 2018, 88: 141-150. |
7 | 韦伟. 车用热泵小管径换热器开发与性能研究[D]. 上海: 上海交通大学, 2013. |
Wei W. Design and performance study of the small diameter tube-and-fin heat exchanger for automotive heat pump system[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
8 | 严瑞东. 基于部件优化的电动汽车热泵系统性能提升研究[D]. 上海: 上海交通大学, 2015. |
Yan R D. Development of heat pump system for electrical cars[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
9 | 王颖, 施骏业, 陈江平, 等. 采用三换热器和四通阀的两种车用热泵系统的对比研究[J]. 制冷学报, 2014, 35(1): 71-76. |
Wang Y, Shi J Y, Chen J P, et al. Comparative study of two kinds of automotive air conditioning system with three heat exchangers and four-way valve[J]. Journal of Refrigeration, 2014, 35(1): 71-76. | |
10 | 吴侣柏, 林洲君, 凌强. 一种微通道双层平行流冷凝器: 205957547U[P]. 2017-02-15. |
Wu L B, Lin Z J, Ling Q. Double -deck parallel flow condenser in microchannel: 205957547U[P]. 2017-02-15. | |
11 | 刘明康, 苏林, 方奕栋, 等. 电动汽车热泵空调系统冬季采暖性能实验研究[J]. 制冷学报, 2020, 41(4): 45-51. |
Liu M K, Su L, Fang Y D, et al. Experimental investigation on heating performance of heat pump air-conditioning system for electric vehicle in winter[J]. Journal of Refrigeration, 2020, 41(4): 45-51. | |
12 | 韩欣欣, 薛庆峰, 田长青. 汽车空调用制冷工质[J]. 制冷与空调, 2017, 17(10): 40-47. |
Han X X, Xue Q F, Tian C Q. Refrigerants used in vehicle air-conditioning[J]. Refrigeration and Air-Conditioning, 2017, 17(10): 40-47. | |
13 | 孙西峰, 韩杨. 汽车空调替代制冷剂的比较[J]. 制冷与空调, 2015, 15(5): 60-67. |
Sun X F, Han Y. Comparison of automotive air conditioning alternative refrigerants[J]. Refrigeration and Air-Conditioning, 2015, 15(5): 60-67. | |
14 | 赵宇. R1234yf汽车空调系统性能研究[D]. 上海: 上海交通大学, 2013. |
Zhao Y. Study on the performance of automotive air conditioning systems with R1234yf[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
15 | 刘雨声, 李万勇, 张立, 等. 采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能[J]. 上海交通大学学报, 2020, 54(10): 1108-1116. |
Liu Y S, Li W Y, Zhang L, et al. Performance of automotive ultra-low temperature economized vapor injection heat pump air conditioning using R1234yf refrigerant[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1108-1116. | |
16 | Zou H M, Huang G Y, Shao S Q, et al. Experimental study on heating performance of an R1234yf heat pump system for electric cars[J]. Energy Procedia, 2017, 142: 1015-1021. |
17 | Direk M, Yüksel F. Experimental evaluation of an automotive heat pump system with R1234yf as an alternative to R134a[J]. Arabian Journal for Science and Engineering, 2020, 45(2): 719-728. |
18 | Lee Y, Jung D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications[J]. Applied Thermal Engineering, 2012, 35: 240-242. |
19 | Aral M C, Suhermanto M, Hosoz M. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a[J]. Science and Technology for the Built Environment, 2021, 27(1): 44-60. |
20 | Li W Y, Liu R, Liu Y S, et al. Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate[J]. International Journal of Refrigeration, 2020, 115: 117-125. |
21 | Del Col D, Torresin D, Cavallini A. Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf[J]. International Journal of Refrigeration, 2010, 33(7): 1307-1318. |
22 | Pabon J J G, Pereira L C, Humia G, et al. Experimental study on the void fraction during two-phase flow of R1234yf in smooth horizontal tubes[J]. International Journal of Refrigeration, 2019, 104: 103-112. |
23 | Illán-Gómez F, López-Belchí A, García-Cascales J R, et al. Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a[J]. International Journal of Refrigeration, 2015, 51: 12-23. |
24 | Nalbandian H, Yang C Y, Chen K T. Effect of channel size and shape on condensation heat transfer of refrigerants HFO-1234yf and HFC-134a in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120314. |
25 | 李华松. R1234yf热泵系统冷凝器数值模拟与试验研究[D]. 唐山: 华北理工大学, 2019. |
Li H S. Numerical simulation and experimental study on condenser of R1234yf heat pump system[D]. Tangshan, China: North China University of Science and Technology, 2019. | |
26 | 姚奕, 徐柏兴, 邵翌旻, 等. R1234yf微通道平行流冷凝器仿真模型[J]. 制冷技术, 2013, 33(3): 34-38. |
Yao Y, Xu B X, Shao Y M, et al. Simulation model for micro-channel parallel flow condenser using R1234yf as working fluid[J]. Chinese Journal of Refrigeration Technology, 2013, 33(3): 34-38. | |
27 | Wang T, Gu B, Wu B, et al. Modeling for multi-pass parallel flow condenser with the effect of refrigerant mal-distribution[J]. International Journal of Refrigeration, 2015, 60: 234-246. |
28 | Yin J M, Bullard C W, Hrnjak P S. Single-phase pressure drop measurements in a microchannel heat exchanger[J]. Heat Transfer Engineering, 2002, 23(4): 3-12. |
29 | 董军启. 车辆冷却系统空气侧特性研究[D]. 上海: 上海交通大学, 2008. |
Dong J Q. Research on air side flow and heat transfer character of vehicle cooling systems[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
30 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows[J]. Int. J. Chem. Eng., 1976,16:359-368. |
31 | Dobson M K, Chato J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. |
32 | Yang C Y, Webb R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 801-809. |
33 | Idelchik I. Handbook of Hydraulic Resistance [M]. 3rd ed. Boca Raton: CRC Press, 1994. |
34 | Coleman J W, Krause P E. Two phase pressure losses of R134a in microchannel tube headers with large free flow area ratios[J]. Experimental Thermal and Fluid Science, 2004, 28(2/3): 123-130. |
35 | 朱正园, 柳建华, 张良, 等. HFO-1234yf与HFC-134a比较分析[J]. 低温与超导, 2012, 40(4): 66-69. |
Zhu Z Y, Liu J H, Zhang L, et al. Comparative analysis of HFO-1234yf and HFC-134a[J]. Cryogenics & Superconductivity, 2012, 40(4): 66-69. | |
36 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 292. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 292. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||