CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4584-4593.DOI: 10.11949/0438-1157.20210135
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Teng WANG(),Qincheng BI(),Miao GUI,Zhaohui LIU
Received:
2021-01-21
Revised:
2021-04-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Qincheng BI
通讯作者:
毕勤成
作者简介:
王腾(1992—),男,博士研究生, CLC Number:
Teng WANG, Qincheng BI, Miao GUI, Zhaohui LIU. Experimental study on void fraction distribution in liquid slug of vertical upward slug flow[J]. CIESC Journal, 2021, 72(9): 4584-4593.
王腾, 毕勤成, 桂淼, 刘朝晖. 弹状流液弹区含气率分布的试验研究[J]. 化工学报, 2021, 72(9): 4584-4593.
Add to citation manager EndNote|Ris|BibTeX
参数 | 最大相对不确定度/% |
---|---|
定性压力P/MPa | 0.48 |
定性温度Tin/℃ | 1.82 |
表观液相速度Uls/(m/s) | 1.5 |
表观气相速度Ugs/(m/s) | 1.0 |
局部含气率αl | 8.4 |
气相速度U/(m/s) | 12.6 |
气泡平均索特直径Dsm/mm | 15.2 |
像素面积 | 0.5 |
Table 1 Measurement uncertainty
参数 | 最大相对不确定度/% |
---|---|
定性压力P/MPa | 0.48 |
定性温度Tin/℃ | 1.82 |
表观液相速度Uls/(m/s) | 1.5 |
表观气相速度Ugs/(m/s) | 1.0 |
局部含气率αl | 8.4 |
气相速度U/(m/s) | 12.6 |
气泡平均索特直径Dsm/mm | 15.2 |
像素面积 | 0.5 |
Fig. 8 Identification of the radial void fraction distribution of the discrete bubbles in liquid slugs, employing the criterion proposed by Mendez-Diaz
研究方法 | 管径/mm | 流型 | 壁峰位置 | 峰值含气率与中心含气率比值 | 文献 |
---|---|---|---|---|---|
试验/探针法、图像法 | 15 | 弹状流液弹区 | 0.5R~0.8R | 1.07~1.26 | 本文 |
试验/探针法 | 50 | 泡状流 | 0.8R~0.95R | 1.18~1.58 | [ |
试验/热膜风速探头 | 38 | 泡状流 | 0.85R~0.95R | 1.16~8.4 | [ |
试验/电导法 | 14.8 | 泡状流 | 0.75R | 2.36 | [ |
数值模拟 | 40 | 泡状流 | 0.85R | 8.4 | [ |
Table 2 Comparison between wall-peak distributions of several typical bubbly flows with that of liquid slugs in this study
研究方法 | 管径/mm | 流型 | 壁峰位置 | 峰值含气率与中心含气率比值 | 文献 |
---|---|---|---|---|---|
试验/探针法、图像法 | 15 | 弹状流液弹区 | 0.5R~0.8R | 1.07~1.26 | 本文 |
试验/探针法 | 50 | 泡状流 | 0.8R~0.95R | 1.18~1.58 | [ |
试验/热膜风速探头 | 38 | 泡状流 | 0.85R~0.95R | 1.16~8.4 | [ |
试验/电导法 | 14.8 | 泡状流 | 0.75R | 2.36 | [ |
数值模拟 | 40 | 泡状流 | 0.85R | 8.4 | [ |
10 | Nogueira S, Riethmuller M L, Campos J B L M, et al. Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: an experimental study[J]. Chemical Engineering Science, 2006, 61(22): 7199-7212. |
11 | de Azevedo M B, Santos D D, Faccini J L H, et al. Experimental study of the falling film of liquid around a Taylor bubble[J]. International Journal of Multiphase Flow, 2017, 88: 133-141. |
12 | Guet S, Decarre S, Henriot V, et al. Void fraction in vertical gas-liquid slug flow: influence of liquid slug content[J]. Chemical Engineering Science, 2006, 61(22): 7336-7350. |
13 | Gui M, Liu Z H, Liao B, et al. Void fraction measurements of steam-water two-phase flow in vertical rod bundle: comparison among different techniques[J]. Experimental Thermal and Fluid Science, 2019, 109: 109881. |
14 | Yang Q Y, Jin N D, Zhai L S, et al. Experimental study of slug and churn flows in a vertical pipe using plug-in optical fiber and conductance sensors[J]. Experimental Thermal and Fluid Science, 2019, 107: 16-28. |
15 | Kesana N R, Parsi M, Vieira R E, et al. Visualization of gas-liquid multiphase pseudo-slug flow using wire-mesh sensor[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 477-490. |
16 | Cerqueira R F L, Paladino E E, Ynumaru B K, et al. Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV)[J]. Chemical Engineering Science, 2018, 189: 1-23. |
17 | 李坤, 严天宇, 随志强, 等. 竖直矩形窄缝通道内气液两相流的实验研究[J]. 动力工程学报, 2020, 40(1): 39-43. |
Li K, Yan T Y, Sui Z Q, et al. Study on gas-liquid two-phase flow in a vertical rectangular narrow channel [J]. Journal of Chinese Society of Power Engineering, 2020, 40(1): 39-43. | |
18 | Majumder S K. Acknowledgment[M]//Hydrodynamics and Transport Processes of Inverse Bubbly Flow. Amsterdam: Elsevier, 2016. |
19 | 陈顺成, 梁志军, 申启访. 基于机器学习的素描图像处理技术[J]. 科技创新与应用, 2019(22): 152-153. |
Chen S C, Liang Z J, Shen Q F. Image sketch processing technology based on machine learning [J]. Technology Innovation and Application, 2019(22): 152-153. | |
20 | Besagni G, Brazzale P, Fiocca A, et al. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes[J]. Flow Measurement and Instrumentation, 2016, 52: 190-207. |
1 | Morgado A O, Miranda J M, Araújo J D P, et al. Review on vertical gas-liquid slug flow[J]. International Journal of Multiphase Flow, 2016, 85: 348-368. |
2 | Mayor T S, Pinto A M F R, Campos J B L M. Vertical slug flow in laminar regime in the liquid and turbulent regime in the bubble wake—comparison with fully turbulent and fully laminar regimes[J]. Chemical Engineering Science, 2008, 63(14): 3614-3631. |
3 | Rattner A S, Garimella S. Vertical upward intermediate scale Taylor flow: experiments and kinematic closure[J]. International Journal of Multiphase Flow, 2015, 75: 107-123. |
21 | Wang T, Liu Z H, Gui M, et al. Void fraction measurements in two-phase flow across vertical tube bundles using optical probes [C]// 8th International Conference on Vortex Flow Mechanics. Xi'an, 2018. |
22 | Shawkat M E, Ching C Y, Shoukri M. Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe[J]. International Journal of Multiphase Flow, 2008, 34(8): 767-785. |
23 | Jin H B, Yang S H, Wang M, et al. Measurement of gas holdup profiles in a gas liquid cocurrent bubble column using electrical resistance tomography[J]. Flow Measurement and Instrumentation, 2007, 18(5/6): 191-196. |
24 | Babaei R, Bonakdarpour B, Ein-Mozaffari F. The use of electrical resistance tomography for the characterization of gas holdup inside a bubble column bioreactor containing activated sludge[J]. Chemical Engineering Journal, 2015, 268: 260-269. |
4 | Jaeger J, Santos C M, Rosa L M, et al. Experimental and numerical evaluation of slugs in a vertical air-water flow[J]. International Journal of Multiphase Flow, 2018, 101: 152-166. |
5 | 夏国栋, 周芳德,胡明胜. 垂直管内气液两相弹状流中长气泡运动规律的研究[J]. 西安交通大学学报, 1996, 30(5): 17-22. |
Xia G D, Zhou F D, Hu M S. Study on the motion of long bubbles in gas-liquid slug flow[J]. Journal of Xi'an Jiaotong University, 1996, 30(5): 17-22. | |
6 | 夏国栋, 周芳德, 胡明胜. 垂直上升气液弹状流中含气率分布的实验研究[J]. 高校化学工程学报, 1999, 13(5): 452-458. |
Xia G D, Zhou F D, Hu M S. An investigation on the void fraction of gas-liquid slug flow in vertical tubes [J]. Journal of Chemical Engineering of Chinese Universities, 1999, 13(5): 452-458. | |
7 | 夏国栋, 刘亮, 马重芳, 等. 气液两相弹状流动的实验研究: 液弹长度及Taylor气泡长度份额[J]. 北京工业大学学报, 2000, 26 (2): 35-38. |
Xia G D, Liu L, Ma C F, et al. An experimental study on gas liquid two-phase slug flow-liquid slug length and the fraction of Taylor[J]. Journal of Beijing Polytechnic University, 2000, 26 (2): 35-38. | |
8 | 夏国栋, 彭岩, 周芳德, 等. 垂直上升气液两相弹状流模型[J]. 化工学报, 1999, 50(6): 792-798. |
Xia G D,Peng Y, Zhou F D, et al. Hydrodynamic model of upward gas-liquid slug flow in vertical tubes[J]. Journal of Chemical Industry and Engineering (China), 1999, 50(6): 792-798. | |
9 | Nogueira S, Riethmuler M L, Campos J B L M, et al. Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids[J]. Chemical Engineering Science, 2006, 61(2): 845-857. |
25 | Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe(Ⅱ): Void fraction, bubble velocity and bubble size distribution[J]. International Journal of Heat and Mass Transfer, 1993, 36(4): 1061-1072. |
26 | Marfaing O, Guingo M, Laviéville J, et al. An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe[J]. Chemical Engineering Science, 2016, 152: 579-585. |
27 | Nakoryakov V E, Kashinsky O N, Randin V V, et al. Gas-liquid bubbly flow in vertical pipes[J]. Journal of Fluids Engineering, 1996, 118(2): 377-382. |
28 | Mendez-Diaz S, Zenit R, Chiva S, et al. A criterion for the transition from wall to core peak gas volume fraction distributions in bubbly flows[J]. International Journal of Multiphase Flow, 2012, 43: 56-61. |
29 | 幸奠川, 孙立成, 阎昌琪, 等. 竖直圆管内泡状流空泡份额径向分布实验研究[J]. 原子能科学技术, 2013, 47(2): 233-237. |
Xing D C, Sun L C, Yan C Q, et al. Experimental investigation on void fraction radial distribution for bubbly flow in vertical circular tube[J]. Atomic Energy Science and Technology, 2013, 47(2): 233-237. | |
30 | Zenit R, Magnaudet J. Path instability of rising spheroidal air bubbles: a shape-controlled process[J]. Physics of Fluids, 2008, 20(6):061702. |
31 | Taitel Y, Bornea D, Dukler A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE Journal, 1980, 26(3): 345-354. |
32 | Mi Y, Ishii M, Tsoukalas L H. Investigation of vertical slug flow with advanced two-phase flow instrumentation[J]. Nuclear Engineering and Design, 2001, 204(1/2/3): 69-85. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[7] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[8] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[9] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[10] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[11] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[12] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||