CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5552-5562.DOI: 10.11949/0438-1157.20210845
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Guodong DING1,2,3(),Jiaqing CHEN1,3(),Zhenlin LI2,Xiaolei CAI1,3
Received:
2021-06-23
Revised:
2021-08-17
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jiaqing CHEN
丁国栋1,2,3(),陈家庆1,3(),李振林2,蔡小垒1,3
通讯作者:
陈家庆
作者简介:
丁国栋(1991—),男,博士研究生,基金资助:
CLC Number:
Guodong DING, Jiaqing CHEN, Zhenlin LI, Xiaolei CAI. Analysis of the effect of air injection hole position on bubble formation characteristics of Venturi-type microbubble generator[J]. CIESC Journal, 2021, 72(11): 5552-5562.
丁国栋, 陈家庆, 李振林, 蔡小垒. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562.
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.963 | |
结构2型 | 1 |
Table 1 Correlations of the Sauter mean diameter with respect to Reth under different Venturi-type microbubble generator
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.963 | |
结构2型 | 1 |
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.991 | |
结构2型 | 0.995 |
Table 2 Correlations of the pressure drop with respect to Reth under different Venturi-type microbubble generator
结构 | 关系式 | R2 |
---|---|---|
结构1型 | 0.991 | |
结构2型 | 0.995 |
1 | 周兰, 李兆军. 微细气泡技术标准体系探究[J]. 净水技术, 2021, 40(2): 75-87. |
Zhou L, Li Z J. Exploration of standard system for fine bubble technology[J]. Water Purification Technology, 2021, 40(2): 75-87. | |
2 | Temesgen T, Bui T T, Han M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. |
3 | 居晓峰, 孙立成, 唐文偲, 等. 文丘里式气泡发生器工作特性分析[J]. 核技术, 2014, 37(12): 69-74. |
Ju X F, Sun L C, Tang W C, et al. Analysis of the operating characteristics of a Venturi-type bubble generator for MSR[J]. Nuclear Techniques, 2014, 37(12): 69-74. | |
4 | Kaneko A, Abe Y. Environmentally-friendly washing technology using the microbubble generator with a Venturi tube [J]. Japanese Journal of Multiphase Flow, 2018, 32(2): 231-238. |
5 | Song Y C, Shentu Y Q, Qian Y L, et al. Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV[J]. Nuclear Engineering and Technology, 2021, 53(1): 79-92. |
6 | Kress T S. Mass transfer between small bubbles and liquids in cocurrent turbulent pipeline flow[R]. Office of Scientific and Technical Information (OSTI), 1972. |
7 | Fujiwara A, Takagi S, Watanabe K, et al. Experimental study on the new micro-bubble generator and its application to water purification system[C]//Proceedings of ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA, 2009: 469-473. |
8 | Fujiwara A, Okamoto K, Hashiguchi K, et al. Bubble breakup phenomena in a venturi tube[C]//Proceedings of ASME/JSME 2007 5th Joint Fluids Engineering Conference. San Diego, California, USA, 2009: 553-560. |
9 | Kawakami M, Abe Y, Kaneko A, et al. Effect of temperature change on interfacial behavior of an acoustically levitated droplet[J]. Microgravity Science and Technology, 2010, 22(2): 145-150. |
10 | Kaneko A, Nomura Y, Takagi S, et al. Bubble break-up phenomena in a venturi tube[J]. Transactions of the Japan Society of Mechanical Engineers Series B, 2012, 78(786): 207-217. |
11 | Nomura Y, Uesawa S I, Kaneko A, et al. Study on bubble breakup mechanism in a Venturi tube[C]//Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. Hamamatsu, Japan, 2012: 2533-2540. |
12 | Uesawa S I, Kaneko A, Nomura Y, et al. Bubble behavior and flow structure on bubble collapse phenomena in a venturi tube[J]. Japanese Journal of Multiphase Flow, 2013, 26(5): 567-575. |
13 | Sun L C, Mo Z Y, Zhao L, et al. Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR[J]. Annals of Nuclear Energy, 2017, 109: 69-81. |
14 | Reichmann F, Varel F, Kockmann N. Energy optimization of gas–liquid dispersion in micronozzles assisted by design of experiment[J]. Processes, 2017, 5(4): 57. |
15 | Sparrow E M, Abraham J P, Minkowycz W J. Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3079-3083. |
16 | Zhao L, Sun L C, Mo Z Y, et al. An investigation on bubble motion in liquid flowing through a rectangular Venturi channel[J]. Experimental Thermal and Fluid Science, 2018, 97: 48-58. |
17 | Gordiychuk A, Svanera M, Benini S, et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator[J]. Experimental Thermal and Fluid Science, 2016, 70: 51-60. |
18 | Li J J, Song Y C, Yin J L, et al. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. |
19 | 曹俊雅, 马梦杰, 李平平, 等. 进气方向对文丘里微气泡发生器气泡直径的影响[J]. 黄金科学技术, 2017, 25(5): 127-134. |
Cao J Y, Ma M J, Li P P, et al. Effect of bubble intake direction on bubble diameters generated by a Venturi microbubble generator[J]. Gold Science and Technology, 2017, 25(5): 127-134. | |
20 | 赵梁, 杜敏, 莫政宇, 等. 文丘里式气泡发生器渐扩段内单气泡输运过程研究[J]. 原子能科学技术, 2019, 53(6): 1021-1028. |
Zhao L, Du M, Mo Z Y, et al. Transportation of individual bubble in diverging section of Venturi-type bubble generator[J]. Atomic Energy Science and Technology, 2019, 53(6): 1021-1028. | |
21 | Huang J, Sun L C, Liu H T, et al. A review on bubble generation and transportation in Venturi-type bubble generators[J]. Experimental and Computational Multiphase Flow, 2020, 2(3): 123-134. |
22 | Zhao L, Sun L C, Mo Z Y, et al. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles[J]. International Journal of Multiphase Flow, 2019, 114: 192-206. |
23 | Long D E, Villasante Tezanos A G, Wise J N, et al. A guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography[J]. PLoS One, 2019, 14(2): e0211629. |
24 | Abramoff M D, Magelhaes P J, Ram S J. Image processing with Image J[J]. Biophotonics International, 2003, 11: 36-42. |
25 | Mawarni D I, Abdat A, Indarto, et al. Experimental study of the effect of the swirl flow on the characteristics of microbubble generator orifice type[J]. AIP Conference Proceedings, 2020, 2248(1): 040004. |
26 | Basso A, Hamad F A, Ganesan P. Initial results from the experimental and computational study of microbubble generation[C]//Proceedings of the 4th World Congress on Momentum, Heat and Mass Transfer. Orléans, ON, Canada, 2019. |
27 | 吴晅, 李晓瑞, 马骏, 等. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912. |
Wu X, Li X R, Ma J, et al. Behavior characteristics of bubble formation under various nozzle immersion modes[J]. CIESC Journal, 2019, 70(3): 901-912. | |
28 | Kang C, Zhang W, Zou Z W, et al. Effects of initial bubble size on geometric and motion characteristics of bubble released in water[J]. Journal of Central South University, 2018, 25(12): 3021-3032. |
29 | 邵梓一, 张海燕, 孙立成, 等. 文丘里式气泡发生器内气泡破碎机制分析[J]. 化工学报, 2018, 69(6): 2439-2445. |
Shao Z Y, Zhang H Y, Sun L C, et al. Bubble breakup mechanism in Venturi-type bubble generator[J]. CIESC Journal, 2018, 69(6): 2439-2445. | |
30 | 马兆伟. 熔盐堆鼓泡器中气泡动力学研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2019. |
Ma Z W. Bubble dynamics study of bubble generator in molten salt reactor[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2019. | |
31 | Feng Y R, Mu H F, Liu X, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
32 | 田齐伟, 阎昌琪, 孙立成, 等. 棒束通道内两相流动摩擦阻力特性分析[J]. 原子能科学技术, 2015, 49(5): 819-824. |
Tian Q W, Yan C Q, Sun L C, et al. Analysis of frictional resistance of two-phase flow in rod bundle channel[J]. Atomic Energy Science and Technology, 2015, 49(5): 819-824. | |
33 | Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295. |
34 | Sadatomi M, Kawahara A, Matsuura H, et al. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube[J]. Experimental Thermal and Fluid Science, 2012, 41: 23-30. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[5] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[10] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[11] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[12] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[13] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[14] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1065
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 743
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||