CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 122-133.DOI: 10.11949/0438-1157.20210881
• Reviews and monographs • Previous Articles Next Articles
Zifan PANG(),Bin JIANG(),Chunying ZHU,Youguang MA,Taotao FU()
Received:
2021-06-29
Revised:
2021-09-08
Online:
2022-01-18
Published:
2022-01-05
Contact:
Taotao FU
通讯作者:
付涛涛
作者简介:
庞子凡(1996—),男,硕士研究生,基金资助:
CLC Number:
Zifan PANG, Bin JIANG, Chunying ZHU, Youguang MA, Taotao FU. Progress of absorption, mass transfer and resource utilization of CO2 in microchannels[J]. CIESC Journal, 2022, 73(1): 122-133.
庞子凡, 蒋斌, 朱春英, 马友光, 付涛涛. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133.
Add to citation manager EndNote|Ris|BibTeX
61 | Aghel B, Sahraie S, Heidaryan E. Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor[J]. Energy, 2020, 201: 117618. |
62 | Aghel B, Sahraie S, Heidaryan E. Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor[J]. Separation and Purification Technology, 2020, 237: 116390. |
63 | Endrődi B, Bencsik G, Darvas F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
64 | Adamo A, Beingessner R L, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
65 | Nguyen D T, Esser-Kahn A P. A microvascular system for chemical reactions using surface waste heat[J]. Angewandte Chemie International Edition, 2013, 52(51): 13731-13734. |
66 | Lai W H, Wang Y X, Wang Y, et al. Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation[J]. Nature Chemistry, 2019, 11(8): 695-701. |
67 | Li S W, Xu J H, Wang Y J, et al. Liquid-liquid two-phase flow in pore array microstructured devices for scaling-up of nanoparticle preparation[J]. AIChE Journal, 2009, 55(12): 3041-3051. |
68 | Wu K J, de Varine Bohan G M, Torrente-Murciano L. Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors[J]. Reaction Chemistry & Engineering, 2017, 2(2): 116-128. |
69 | Duraiswamy S, Khan S A. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals[J]. Small, 2009, 5(24): 2828-2834. |
70 | Han C L, Hu Y P, Wang K, et al. Preparation and in situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system[J]. Powder Technology, 2019, 356: 414-422. |
71 | Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020. |
72 | Wang Y, Zhang X L, Wang A J, et al. Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor[J]. Chemical Engineering Journal, 2014, 235: 191-197. |
73 | Chin S F, Iyer K S, Raston C L, et al. Size selective synthesis of superparamagnetic nanoparticles in thin fluids under continuous flow conditions[J]. Advanced Functional Materials, 2008, 18(6): 922-927. |
74 | Yang H W, Luan W L, Tu S T, et al. High-temperature synthesis of CdSe nanocrystals in a serpentine microchannel: wide size tunability achieved under a short residence time[J]. Crystal Growth & Design, 2009, 9(3): 1569-1574. |
1 | Das S, Pérez-Ramírez J, Gong J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
2 | Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
75 | 童张法, 胡超, 李立硕, 等. 间歇鼓泡碳化法制备立方形纳米碳酸钙工艺条件优化[J]. 广西科学, 2015, 22(1): 53-59. |
Tong Z F, Hu C, Li L S, et al. Optimization of processing conditions for the preparation of cubic nano-sized calcium carbonate by intermittent bubbling carbonation[J]. Guangxi Sciences, 2015, 22(1): 53-59. | |
76 | 张士成, 韩跃新, 蒋军华, 等. 纳米碳酸钙的合成方法[J]. 矿产保护与利用, 1998(3): 11-15. |
Zhang S C, Han Y X, Jiang J H, et al. Synthesis of nano calcium carbonate[J]. Conservation and Utilization of Mineral Resources, 1998(3): 11-15. | |
3 | Yaashikaa P R, Senthil Kumar P, Varjani S J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization, 2019, 33: 131-147. |
4 | Chen C, Khosrowabadi Kotyk J F, Sheehan S W. Progress toward commercial application of electrochemical carbon dioxide reduction[J]. Chem, 2018, 4(11): 2571-2586. |
5 | Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie International Edition, 2014, 53(31): 7992-8002. |
6 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
7 | Haszeldine R S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652. |
8 | Liu N, Aymonier C, Lecoutre C, et al. Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy[J]. Chemical Physics Letters, 2012, 551: 139-143. |
9 | Al-Rawashdeh M, Yu F, Nijhuis T A, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor[J]. Chemical Engineering Journal, 2012, 207/208: 645-655. |
77 | 徐旺生, 何秉忠, 金士威, 等. 多级喷雾碳化法制备纳米碳酸钙工艺研究[J]. 无机材料学报, 2001, 16(5): 985-988. |
Xu W S, He B Z, Jin S W, et al. Preparation of nanometer calcium carbonate by multistage spray carbonation[J]. Journal of Inorganic Materials, 2001, 16(5): 985-988. | |
78 | Kang F, Wang D, Pu Y, et al. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411. |
79 | Boyjoo Y, Pareek V K, Liu J. Synthesis of micro and nano-sized calcium carbonate particles and their applications[J]. J. Mater. Chem. A, 2014, 2(35): 14270-14288. |
80 | Wang K, Wang Y J, Chen G G, et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 Nanoparticles[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6092-6098. |
81 | Liang Y, Chu G W, Wang J X, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. |
82 | Rong M Z, Zhang M Q, Ruan W H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review[J]. Materials Science and Technology, 2006, 22(7): 787-796. |
83 | Lin Y, Chen H B, Chan C M, et al. High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism[J]. Macromolecules, 2008, 41(23): 9204-9213. |
84 | Lam T D, Hoang T V, Quang D T, et al. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites[J]. Materials Science and Engineering: A, 2009, 501(1/2): 87-93. |
85 | Wang C Y, Sheng Y, Hari-Bala, et al. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ[J]. Materials Science and Engineering: C, 2007, 27(1): 42-45. |
86 | Du L, Wang Y J, Luo G S. In situ preparation of hydrophobic CaCO3 nanoparticles in a gas-liquid microdispersion process[J]. Particuology, 2013, 11(4): 421-427. |
87 | Benito-Lopez F, Tiggelaar R M, Salbut K, et al. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor[J]. Lab on a Chip, 2007, 7(10): 1345. |
88 | Han C L, Hu Y P, Wang K, et al. Synthesis of mesoporous silica microspheres by a spray-assisted carbonation microreaction method[J]. Particuology, 2020, 50: 173-180. |
89 | Park J I, Jagadeesan D, Williams R, et al. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities[J]. ACS Nano, 2010, 4(11): 6579-6586. |
10 | Gupta R, Fletcher D F, Haynes B S. Taylor flow in microchannels: a review of experimental and computational work[J]. The Journal of Computational Multiphase Flows, 2010, 2(1): 1-31. |
11 | Zhao Y C, Yao C Q, Chen G W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor[J]. Green Chem, 2013, 15(2): 446-452. |
12 | Inoue T, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1153-1160. |
13 | Fadaei H, Scarff B, Sinton D. Rapid microfluidics-based measurement of CO2 diffusivity in bitumen[J]. Energy & Fuels, 2011, 25(10): 4829-4835. |
14 | Lefortier S G R, Hamersma P J, Bardow A, et al. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab on a Chip, 2012, 12(18): 3387. |
15 | Sell A, Fadaei H, Kim M, et al. Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis[J]. Environmental Science & Technology, 2013, 47(1): 71-78. |
16 | Abolhasani M, Abolhasani M, Singh M, et al. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents[J]. Lab on a Chip, 2012, 12(9): 1611-1618. |
17 | Li W, Liu K, Simms R, et al. Microfluidic study of fast gas-liquid reactions[J]. Journal of the American Chemical Society, 2012, 134(6): 3127-3132. |
18 | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
19 | Kashid M N, Renken A, Kiwi-Minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science, 2011, 66(17): 3876-3897. |
20 | Tumarkin E, Nie Z H, Park J I, et al. Temperature-controlled ‘breathing’ of carbon dioxide bubbles[J]. Lab on a Chip, 2011, 11(20): 3545. |
21 | Bousquet P. Regional changes in carbon dioxide fluxes of land and oceans since 1980[J]. Science, 2000, 290(5495): 1342-1346. |
22 | Dong R, Chu D, Sun Q Q, et al. Numerical simulation of the mass transfer process of CO2 absorption by different solutions in a microchannel[J]. The Canadian Journal of Chemical Engineering, 2020, 98(12): 2648-2664. |
23 | Yang L X, Dietrich N, Loubière K, et al. Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[J]. Chemical Engineering Science, 2016, 143: 364-368. |
24 | Yang L X, Loubière K, Dietrich N, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203. |
25 | van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
26 | Svetlov S D, Abiev R S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 975-989. |
27 | Zhu C Y, Li C F, Gao X Q, et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer, 2014, 73: 492-499. |
28 | Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
29 | Zhang P, Yao C Q, Ma H Y, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels[J]. Chemical Engineering Science, 2018, 182: 17-27. |
30 | Chu C Y, Zhang F B, Zhu C Y, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
31 | Yang L, Tan J, Wang K, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109: 306-314. |
32 | Sun R, Cubaud T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows[J]. Lab on a Chip, 2011, 11(17): 2924-2928. |
33 | Sui J S, Yan J Y, Liu D, et al. Continuous synthesis of nanocrystals via flow chemistry technology[J]. Small, 2020, 16(15): 1902828. |
34 | Matsuoka A, Mae K. Design strategy of a microchannel device for liquid-liquid extraction based on the relationship between mass transfer rate and two-phase flow pattern[J]. Chemical Engineering and Processing - Process Intensification, 2021, 160: 108297. |
35 | Chen T Y, Desir P, Bracconi M, et al. Liquid–liquid microfluidic flows for ultrafast 5-hydroxymethyl furfural extraction[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3723-3735. |
36 | Cubaud T, Sauzade M, Sun R P. CO2 dissolution in water using long serpentine microchannels[J]. Biomicrofluidics, 2012, 6(2): 022002. |
37 | Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708. |
38 | Cubaud T, Tatineni M, Zhong X L, et al. Bubble dispenser in microfluidic devices[J]. Physical Review E, 2005, 72(3): 037302. |
39 | Nirmal G M, Leary T F, Ramachandran A. Mass transfer dynamics in the dissolution of Taylor bubbles[J]. Soft Matter, 2019, 15(13): 2746-2756. |
40 | Ho T H M, Sameoto D, Tsai P A. Multiphase CO2 dispersions in microfluidics: formation, phases, and mass transfer[J]. Chemical Engineering Research and Design, 2021, 174: 116-126. |
41 | Marre S, Aymonier C, Subra P, et al. Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows[J]. Applied Physics Letters, 2009, 95(13): 134105. |
42 | Burk M J, Feng S G, Gross M F, et al. Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117(31): 8277-8278. |
43 | Sauzade M, Cubaud T. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils[J]. Physical Review E, 2013, 88(5): 051001. |
44 | Pang Z F, Zhu C Y, Ma Y G, et al. CO2 absorption by liquid films under Taylor flow in serpentine minichannels[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12250-12261. |
45 | Muradoglu M. Axial dispersion in segmented gas-liquid flow: effects of alternating channel curvature[J]. Physics of Fluids, 2010, 22(12): 122106. |
46 | Fries D M, von Rohr P R. Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J]. Chemical Engineering Science, 2009, 64(6): 1326-1335. |
47 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
48 | Olah G A, Goeppert A, Prakash G K S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons[J]. The Journal of Organic Chemistry, 2009, 74(2): 487-498. |
49 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
50 | Pang Z F, Jiang S K, Zhu C Y, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
51 | Durgadevi A, Pushpavanam S. An experimental and theoretical investigation of pure carbon dioxide absorption in aqueous sodium hydroxide in glass millichannels[J]. Journal of CO2 Utilization, 2018, 26: 133-142. |
52 | Zhou Y F, Yao C Q, Zhang P, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
53 | Tan J, Lu Y C, Xu J H, et al. Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 229-235. |
54 | Zhu C Y, Lu Y T, Fu T T, et al. Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel[J]. International Journal of Heat and Mass Transfer, 2017, 114: 83-89. |
55 | Sobieszuk P, Pohorecki R, Cygański P, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science, 2011, 66(23): 6048-6056. |
56 | Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552. |
57 | Aghel B, Heidaryan E, Sahraie S, et al. Optimization of monoethanolamine for CO2 absorption in a microchannel reactor[J]. Journal of CO2 Utilization, 2018, 28: 264-273. |
58 | Aghel B, Sahraie S, Heidaryan E, et al. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor[J]. Process Safety and Environmental Protection, 2019, 131: 152-159. |
59 | Dietrich N, Loubière K, Jimenez M, et al. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[J]. Chemical Engineering Science, 2013, 100: 172-182. |
60 | Kováts P, Pohl D, Thévenin D, et al. Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube[J]. Chemical Engineering Science, 2018, 190: 273-285. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[9] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[12] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[13] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||