CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4355-4365.DOI: 10.11949/0438-1157.20220608
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Huaxing ZHU(), Jingxiao WANG, Jianliang XU(), Zhenghua DAI, Haifeng LIU
Received:
2022-04-28
Revised:
2022-08-02
Online:
2022-11-02
Published:
2022-10-05
Contact:
Jianliang XU
通讯作者:
许建良
作者简介:
朱华兴(1998—),男,硕士研究生,1255094489@qq.com
基金资助:
CLC Number:
Huaxing ZHU, Jingxiao WANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Particle velocity and concentration distribution in double-exit staged entrained-flow gasifier[J]. CIESC Journal, 2022, 73(10): 4355-4365.
朱华兴, 王景效, 许建良, 代正华, 刘海峰. 双出口分级气流床气化炉内颗粒速度和浓度分布[J]. 化工学报, 2022, 73(10): 4355-4365.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Experiment process1—blower; 2—valve; 3—rotameter; 4—silos; 5—feeder; 6—P-nozzle; 7—G-nozzle; 8—P-exit; 9—G-exit; 10—gasifier; 11—probe; 12—PV6M particle velocimeter; 13—computer
热解喷嘴 下偏转角γ/(°) | 热解喷嘴 左偏转角θ/(°) | 颗粒流量/ (kg/h) | 总进气量/ (m3/h) | 热解室进气量/ (m3/h) | 气化室进气量/ (m3/h) | 进气量比α |
---|---|---|---|---|---|---|
15 | 0 | 97.2×4 | 200 | 12.5×4 | 37.5×4 | 1∶3 |
10.0×4 | 40.0×4 | 1∶4 | ||||
8.3×4 | 41.7×4 | 1∶5 |
Table 1 Experimental conditions
热解喷嘴 下偏转角γ/(°) | 热解喷嘴 左偏转角θ/(°) | 颗粒流量/ (kg/h) | 总进气量/ (m3/h) | 热解室进气量/ (m3/h) | 气化室进气量/ (m3/h) | 进气量比α |
---|---|---|---|---|---|---|
15 | 0 | 97.2×4 | 200 | 12.5×4 | 37.5×4 | 1∶3 |
10.0×4 | 40.0×4 | 1∶4 | ||||
8.3×4 | 41.7×4 | 1∶5 |
进气量比α | 下偏转角γ/(°) | 左偏转角θ/(°) |
---|---|---|
1∶4 | 10.0 | 0 |
12.5 | 0 | |
15.0 | 0 | |
17.5 | 0 | |
20.0 | 0 | |
15.0 | 3 | |
15.0 | 6 | |
15.0 | 9 | |
15.0 | 12 |
Table 2 Simulated conditions
进气量比α | 下偏转角γ/(°) | 左偏转角θ/(°) |
---|---|---|
1∶4 | 10.0 | 0 |
12.5 | 0 | |
15.0 | 0 | |
17.5 | 0 | |
20.0 | 0 | |
15.0 | 3 | |
15.0 | 6 | |
15.0 | 9 | |
15.0 | 12 |
1 | 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211. |
Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211. | |
2 | 王辅臣, 代正华. 煤气化——煤炭高效清洁利用的核心技术[J]. 化学世界, 2015, 56(1): 51-55. |
Wang F C, Dai Z H. Coal gasification—core technology of the efficient and clean utilization of coal[J]. Chemical World, 2015, 56(1): 51-55. | |
3 | 黄戒介, 房倚天, 王洋. 现代煤气化技术的开发与进展[J]. 燃料化学学报, 2002, 30(5): 385-391. |
Huang J J, Fang Y T, Wang Y. Development and progress of modern coal gasification technology[J]. Journal of Fuel Chemistry and Technology, 2002, 30(5): 385-391. | |
4 | 王辅臣, 于广锁, 龚欣, 等. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. |
Wang F C, Yu G S, Gong X, et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 173-180. | |
5 | 李相军. HT-L炉粉煤加压气化技术[J]. 河南化工, 2010, 27(17): 49-50, 62. |
Li X J. Pressurized pulverized coal gasification technology of HT-L furnace[J]. Henan Chemical Industry, 2010, 27(17): 49-50, 62. | |
6 | He C, Feng X, Chu K H. Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant[J]. Applied Energy, 2013, 111: 742-757. |
7 | Qin S Y, Chang S Y, Yao Q. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432. |
8 | 王辅臣. 煤气化技术在中国: 回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
9 | 杨国辉, 褚夫奎, 李磊. 煤炭气化技术的比较与分析[J]. 山东化工, 2021, 50(23): 61-64, 67. |
Yang G H, Chu F K, Li L. Comparison and analysis of coal gasification technology[J]. Shandong Chemical Industry, 2021, 50(23): 61-64, 67. | |
10 | 王欢, 范飞, 李鹏飞, 等. 现代煤气化技术进展及产业现状分析[J]. 煤化工, 2021, 49(4): 52-56. |
Wang H, Fan F, Li P F, et al. Modern coal gasification technology progress and industry status analysis[J]. Coal Chemical Industry, 2021, 49(4): 52-56. | |
11 | 许建良, 刘海峰, 代正华, 等. 同时生产甲烷热解气和合成气的气化系统和气化方法: 107418632A[P]. 2017-12-01. |
Xu J L, Liu H F, Dai Z H, et al. Gasification system and gasification method for producing methane pyrolysis gas and synthesis gas simultaneously: 107418632A[P]. 2017-12-01. | |
12 | Ma J L, Zitney S E. Computational fluid dynamic modeling of entrained-flow gasifiers with improved physical and chemical submodels[J]. Energy & Fuels, 2012, 26(12): 7195-7219. |
13 | Slezak A, Kuhlman J M, Shadle L J, et al. CFD simulation of entrained-flow coal gasification: coal particle density/sizefraction effects[J]. Powder Technology, 2010, 203(1): 98-108. |
14 | Giuffrida A, Romano M C, Lozza G. Thermodynamic analysis of air-blown gasification for IGCC applications[J]. Applied Energy, 2011, 88(11): 3949-3958. |
15 | Kumar M. Multiscale CFD simulations of entrained flow gasification[D]. Massachusetts: Massachusetts Institute of Technology, 2011. |
16 | Xu S S, Ren Y Q, Wang B M, et al. Development of a novel 2-stage entrained flow coal dry powder gasifier[J]. Applied Energy, 2014, 113: 318-323. |
17 | Ren Y Q, Xu S S, Li G Y. Experimental study on the operational performance of an advanced two-stage entrained-flow coal gasifier[J]. Energy & Fuels, 2014, 28(8): 4911-4917. |
18 | 张建胜, 胡文斌, 吴玉新, 等. 分级气流床气化炉模型研究[J]. 化学工程, 2007, 35(3): 14-18. |
Zhang J S, Hu W B, Wu Y X, et al. Study on the modeling of staged entrained flow gasifier[J]. Chemical Engineering (China), 2007, 35(3): 14-18. | |
19 | Watanabe H, Tanno K, Umetsu H, et al. Modeling and simulation of coal gasification on an entrained flow coal gasifier with a recycled CO2 injection[J]. Fuel, 2015, 142: 250-259. |
20 | Watanabe H, Ahn S, Tanno K. Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier[J]. Energy, 2017, 118: 181-189. |
21 | González-Tello P, Camacho F, Vicaria J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J]. Powder Technology, 2008, 186(3): 278-281. |
22 | Li J W, An W, Gao H W, et al. An experimental study on oil droplet size distribution in subsurface oil releases[J]. Acta Oceanologica Sinica, 2018, 37(11): 88-95. |
23 | 秦军, 李伟锋, 代正华, 等. 受限气固两相射流的实验研究和数值模拟[J]. 高校化学工程学报, 2005, 19(5): 619-624. |
Qin J, Li W F, Dai Z H, et al. Experimental study and numerical simulation of confined gas-solid two-phase jet[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(5): 619-624. | |
24 | Li Y Z, Zhai G W, Zhang H T, et al. Experimental and predictive research on solids holdup distribution in a CFB riser[J]. Powder Technology, 2019, 344: 830-841. |
25 | Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. |
26 | Wu Y X, Zhang J S, Smith P J, et al. Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy & Fuels, 2010, 24(2): 1156-1163. |
27 | Sun Z H, Dai Z H, Zhou Z J, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569. |
28 | Shi S P, Zitney S E, Shahnam M, et al. Modelling coal gasification with CFD and discrete phase method[J]. Journal of the Energy Institute, 2006, 79(4): 217-221. |
29 | Li C, Dai Z H, Xu J L, et al. Numerical study of the particle residence time and flow characters in an opposed multi-burner gasifier[J]. Powder Technology, 2015, 286: 64-72. |
30 | Choi Y C, Li X Y, Park T J, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001, 80(15): 2193-2201. |
31 | 谢军龙, 钟小普, 王嘉冰, 等. 亚音速射流实验与流场模拟[J]. 工程热物理学报, 2013, 34(8): 1457-1461. |
Xie J L, Zhong X P, Wang J B, et al. Experiment study and flow field simulation of the subsonic jet[J]. Journal of Engineering Thermophysics, 2013, 34(8): 1457-1461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||