CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4345-4354.DOI: 10.11949/0438-1157.20220680
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yingjie LI1(), Qixia LI1, Hong WANG1,2(), Xun ZHU1,2, Rong CHEN1,2, Qiang LIAO1,2, Yudong DING1,2
Received:
2022-05-12
Revised:
2022-07-13
Online:
2022-11-02
Published:
2022-10-05
Contact:
Hong WANG
李英杰1(), 李奇侠1, 王宏1,2(), 朱恂1,2, 陈蓉1,2, 廖强1,2, 丁玉栋1,2
通讯作者:
王宏
作者简介:
李英杰(1997—),男,硕士研究生,1005454565@qq.com
基金资助:
CLC Number:
Yingjie LI, Qixia LI, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Influence of wavy-structured superhydrophobic surfaces on coalescence-induced droplet jumping[J]. CIESC Journal, 2022, 73(10): 4345-4354.
李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354.
Add to citation manager EndNote|Ris|BibTeX
1 | Miljkovic N, Enright R, Nam Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1): 179-187. |
2 | Rykaczewski K, Paxson A T, Anand S, et al. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(3): 881-891. |
3 | Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5): 397-406. |
4 | Wisdom K M, Watson J A, Qu X P, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. PNAS, 2013, 110(20): 7992-7997. |
5 | Tian Y, Wang H, Deng Q Y, et al. Dynamic behaviors and charge characteristics of droplet in a vertical electric field before bouncing[J]. Experimental Thermal and Fluid Science, 2020, 119: 110213. |
6 | Watson G S, Gellender M, Watson J A. Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning[J]. Biofouling, 2014, 30(4): 427-434. |
7 | Zhang K X, Li Z, Maxey M, et al. Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(6): 2431-2442. |
8 | Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 2013, 7(2): 1618-1627. |
9 | Zhang Q L, He M, Chen J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets[J]. Chemical Communications (Cambridge, England), 2013, 49(40): 4516-4518. |
10 | Chu F Q, Wu X M, Wang L L. Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8420-8425. |
11 | Yin C C, Wang T Y, Che Z Z, et al. Critical and optimal wall conditions for coalescence-induced droplet jumping on textured superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(49): 16201-16209. |
12 | Wang Y H, Ming P J. Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets[J]. Physics of Fluids, 2019, 31(12): 122108. |
13 | Nam Y, Kim H, Shin S. Energy and hydrodynamic analyses of coalescence-induced jumping droplets[J]. Applied Physics Letters, 2013, 103(16): 161601. |
14 | Enright R, Miljkovic N, Sprittles J, et al. How coalescing droplets jump[J]. ACS Nano, 2014, 8(10): 10352-10362. |
15 | Chen Y, Lian Y. Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces[J]. Physics of Fluids, 2018, 30(11): 112102. |
16 | Liu F J, Ghigliotti G, Feng J J, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces[J]. Journal of Fluid Mechanics, 2014, 752: 39-65. |
17 | Zhao G L, Zou G S, Wang W G, et al. Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance[J]. Soft Matter, 2020, 16(18): 4462-4476. |
18 | Kim M K, Cha H, Birbarah P, et al. Enhanced jumping-droplet departure[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(49): 13452-13466. |
19 | Moradi M, Rahimian M H, Chini S F. Coalescence-induced droplet detachment on low-adhesion surfaces: a three-phase system study[J]. Physical Review E, 2019, 99(6): 063102. |
20 | Xie F F, Lu G, Wang X D, et al. Coalescence-induced jumping of two unequal-sized nanodroplets[J]. Langmuir, 2018, 34(8): 2734-2740. |
21 | Liang Z, Keblinski P. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces[J]. Applied Physics Letters, 2015, 107(14): 143105. |
22 | Wang K, Li R X, Liang Q Q, et al. Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces[J]. Applied Physics Letters, 2017, 111(6): 061603. |
23 | Cheng Y P, Xu J L, Sui Y. Numerical investigation of coalescence-induced droplet jumping on superhydrophobic surfaces for efficient dropwise condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 95: 506-516. |
24 | Chu F Q, Yuan Z P, Zhang X, et al. Energy analysis of droplet jumping induced by multi-droplet coalescence: the influences of droplet number and droplet location[J]. International Journal of Heat and Mass Transfer, 2018, 121: 315-320. |
25 | Vahabi H, Wang W, Mabry J M, et al. Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture[J]. Science Advances, 2018, 4(11): eaau3488. |
26 | Wang K, Liang Q Q, Jiang R, et al. Self-enhancement of droplet jumping velocity: the interaction of liquid bridge and surface texture[J]. RSC Advances, 2016, 6(101): 99314-99321. |
27 | Lu D Q, Zhao M R, Zhang H L, et al. Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove[J]. Langmuir, 2020, 36(19): 5444-5453. |
28 | Wang X, Chen Z Q, Xu B. Coalescence-induced jumping of condensate droplets on microstructured surfaces with different gravitational fields by lattice Boltzmann method[J]. Computers & Fluids, 2019, 188: 60-69. |
29 | 彭启, 贾力, 丁艺, 等. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929. |
Peng Q, Jia L, Ding Y, et al. The effect of confined microstructures on the coalescence-induced droplet jumping with low surface tension[J]. CIESC Journal, 2021, 72(4): 1920-1929. | |
30 | 任辉, 王宏, 朱恂, 等. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266. |
Ren H, Wang H, Zhu X, et al. Lateral bouncing behavior of droplets on the wettability-patterned surface[J]. CIESC Journal, 2021, 72(8): 4255-4266. | |
31 | Liu X L, Cheng P. 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces[J]. International Communications in Heat and Mass Transfer, 2015, 64: 7-13. |
32 | Fakhari A, Bolster D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios[J]. Journal of Computational Physics, 2017, 334: 620-638. |
33 | Yurkiv V, Yarin A L, Mashayek F. Modeling of droplet impact onto polarized and nonpolarized dielectric surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(34): 10169-10180. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||