CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5592-5604.DOI: 10.11949/0438-1157.20221018
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Huijun SHANG1,2(), Hengli LI2,3, Jiayi LIU2, Feng PAN2(), Zhan DU2(), Linbing SUN1
Received:
2022-07-16
Revised:
2022-11-26
Online:
2023-01-17
Published:
2022-12-05
Contact:
Feng PAN, Zhan DU
尚慧俊1,2(), 黎亨利2,3, 刘家义2, 潘锋2(), 杜占2(), 孙林兵1
通讯作者:
潘锋,杜占
作者简介:
尚慧俊(1996—),男,硕士研究生, 1293287496@qq.com
基金资助:
CLC Number:
Huijun SHANG, Hengli LI, Jiayi LIU, Feng PAN, Zhan DU, Linbing SUN. Effect of Co on the pre-reduction process of WO3-Co3O4 and carbonization performance of its product[J]. CIESC Journal, 2022, 73(12): 5592-5604.
尚慧俊, 黎亨利, 刘家义, 潘锋, 杜占, 孙林兵. Co对WO3-Co3O4预还原的影响及其产物碳化性能[J]. 化工学报, 2022, 73(12): 5592-5604.
Add to citation manager EndNote|Ris|BibTeX
氧化钨 | K |
---|---|
WO3 | 6.00 |
WO2.9 | 6.23 |
WO2.72 | 6.65 |
WO2 | 14.69 |
Table 1 The RIR values of different tungsten oxides
氧化钨 | K |
---|---|
WO3 | 6.00 |
WO2.9 | 6.23 |
WO2.72 | 6.65 |
WO2 | 14.69 |
1 | Ryu T, Sohn H Y, Han G, et al. Nanograined WC-Co composite powders by chemical vapor synthesis[J]. Metallurgical & Materials Transactions B, 2008, 39(1): 1-6. |
2 | Liu W, Song X, Zhang J, et al. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(1): 115-120. |
3 | Fu L, Cao L H, Fan Y S. Two-step synthesis of nanostructured tungsten carbide-cobalt powders[J]. Scripta Materialia, 2001, 44(7): 1061-1068. |
4 | Zawrah M F. Synthesis and characterization of WC-Co nanocomposites by novel chemical method[J]. Ceramics International, 2007, 33(2): 155-161. |
5 | Ma J, Du Y. Synthesis of nanocrystalline hexagonal tungsten carbide via co-reduction of tungsten hexachloride and sodium carbonate with metallic magnesium[J]. Journal of Alloys & Compounds, 2008, 448(1/2): 215-218. |
6 | El-Eskandarany M S, Mahday A A, Ahmed H A, et al. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations[J]. Journal of Alloys & Compounds, 2000, 312(1/2): 315-325. |
7 | Yang J G, Hai L, et al. Synthesis of ultrafine WC-10Co composite powders with carbon boat added and densification by sinter-HIP[J]. International Journal of Refractory Metals & Hard Materials, 2017, 62(Pt.B): 104-109. |
8 | Pan Y, Xiong H, Li Z, et al. Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals & Hard Materials, 2019, 81: 127-136. |
9 | Choongkwon P, Jiwoong K, Kang S. Effect of cobalt on the synthesis and sintering of WC-Co composite powders[J]. Journal of Alloys & Compounds, 2018, 766: 564-571. |
10 | Davidson C F, Wadsworth A. Catalytic effect of cobalt on the carburization kinetics of tungsten[J]. Metallurgical & Materials Transactions A, 1979, 10: 1059-1069. |
11 | Wang H, Hou C, Liu X, et al. Phase evolution in synthesis of nanocrystalline WC-η composite powder by solid-state in situ reactions[J]. International Journal of Refractory Metals & Hard Materials, 2017, 71: 21-27. |
12 | French G J, Sale F R. The hydrogen reduction of cobalt-tungsten mixed oxides[J]. Journal of Materials Science, 1985, 20: 1291-1300. |
13 | 徐仰涛, 李淮, 马腾飞, 等. B和Ce对Co-8.8Al-9.8W-2Ta合金组织和性能的影响[J]. 稀有金属材料与工程, 2022, 51(3): 921-926. |
Xu Y T, Li H, Ma T F, et al. Effect of B and Ce on microstructure and properties of Co-8.8Al-9.8W-2Ta superalloys[J]. Rare Metal Materials and Engineering, 2022, 51(3): 921-926. | |
14 | Pan F, Liu J, Du Z, et al. Reaction process of WC prepared under a CO atmosphere in a fluidized bed[J]. Industrial & Engineering Chemistry Research, 2021, 60:162-172. |
15 | Popovics, Grzeta P. The doping method in quantitative X-ray diffraction phase analysis. Addendum[J]. Journal of Applied Crystallography, 1983, 16(5): 505-507. |
16 | Lan Y Q, Deng B L, Kim C, et al. Catalysis of elemental sulfur nanoparticles on chromium(Ⅵ) reduction by sulfide under anaerobic conditions[J]. Environmental Science & Technology, 2005, 39(7): 2087-2094. |
17 | Pasquazzi A, Schubert W D, Weissenbacher R, et al. Cobalt oxide as a raw material for the production of WC-Co cemented carbides and its advantages for the pressing process[J]. International Journal of Refractory Metals and Hard Materials, 2017, 72:104-109. |
18 | Narkiewicz U, Podsiad Y M, Drzejewski R J, et al. Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials[J]. Applied Catalysis A General, 2010, 384(1/2): 27-35. |
19 | Babutina T E, Uvarova I V, Konchakovskaya L D, et al. Preparation of hard alloy WC and WC-Co mixtures with reduction and carbidizing treatment of oxidized tungsten containing scrap[J]. Powder Metallurgy & Metal Ceramics, 2004, 43(3/4): 111-116. |
20 | Hu Y, Yu Y. A density functional theory study on ethylene decomposition to carbon monomer on Cu(410) surface[J]. Computational Materials Science, 2019, 161: 321-329. |
21 | 赵岁春, 刘宁, 陈爱华. 含碳量对WC-13Co硬质合金组织和性能的影响[J]. 热处理, 2017(5): 38-43. |
Zhao S C, Liu N, Chen A H. Effects of carbon content on microstructure and property of WC-13Co cemented carbide[J]. Heat Treatment, 2017(5): 38-43. | |
22 | Zhang Z, Yu Z, Muhammed M. The reduction of cobalt doped ammonium paratungstate to nanostructured W-Co powder[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(3): 227-233. |
23 | Hong W A, Gg A, Qiang C A, et al. Cobalt sulfide catalysts for single-walled carbon nanotube synthesis[J]. Diamond and Related Materials, 2021, 114:108288-108298. |
24 | Tan G L, Wu X J, Li Z Q. Carbon nanotubes strengthened nanophase WC-Co hard alloys[J]. Advanced Engineering Materials, 2006, 8(1/2): 62-72. |
25 | Zhang F, Shen J, Sun J. Processing and properties of carbon nanotubes-nano-WC-Co composites[J]. Materials Science and Engineering: A, 2004, 381(1/2): 86-91. |
26 | 冯艳艳. 碳源对碳纳米管的结构及其电化学性能的影响[J]. 纳米科技, 2015(4): 8-12. |
Feng Y Y. Effect of carbon source on the structure and electrochemical properties of carbon nanotubes[J]. Nanomaterial & Application, 2015(4): 8-12. | |
27 | Sinnott S B, Andrews R, Qian D, et al.Model of carbon nanotube growth through chemical vapor deposition[J]. Chemical Physics Letters, 1999, 315(1/2): 25-30. |
28 | Sawa P G, Polychronopoulou K, Ryzkov V A. Low-temperature catalytic decomposition of ethylene into H2 and secondary carbon nanotubes over Ni/CNTs[J]. Applied Catalysis B: Environmental, 2010, 93(3/4): 314-324. |
29 | Shaikhutdinov S K, Zaikovskii V I, Avdeeva L B. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition Ⅲ. Morphology and surface structure of the carbon filaments[J]. Applied Catalysis A: General, 1996, 148(1): 123-133. |
30 | 郭建忠, 侯昭胤, 高静, 等. 不同粒径的Ni/SiO2催化剂上CH4和CO2吸附活化的漫反射傅里叶变换红外光谱研究[J]. 催化学报, 2007(1): 22-26. |
Guo J Z, Hou Z Y, Gao J, et al. Drifts study on adsorption and activation of CH4 and CO2 on Ni/SiO2 catalyst with various Ni particle sizes[J]. Chinese Journal of Catalysis, 2007(1): 22-26. | |
31 | Ma L, Yan L, Lu A H, et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Journal of Catalysis, 2019, 31:1806296-1806320. |
32 | 吴志坚. 钴粉粒度对超细硬质合金性能的影响[C]//第十次全国硬质合金学术会议. 西宁, 2010. |
Wu Z J.Effect of particle size of cobalt powder on properties of ultrafine cemented carbide [C]//Proceedings of the 10th National Cemented Carbide Academic Conference. Xining, 2010. | |
33 | 丁晨旭, 汤睿, 钱渊, 等. Ni基催化剂中Ni颗粒粒径对甲烷干气重整反应的影响及其应用展望[J]. 天然气化工—C1化学与化工, 2022, 47(2): 1-10. |
Ding C X, Tang R, Qian Y, et al. Effect of Ni-based catalyst Ni particle size on dry reforming of methane reaction and its application prospect[J]. Natural Gas Chemical Industry, 2022, 47(2): 1-10. | |
34 | Narayanan R, El-Sayed M A. Catalysis with Transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability[J]. The Journal of Physical Chemistry B, 2005, 109:12663-12676. |
35 | Won J J, Shim J O, Kim H M, et al. A review on dry reforming of methane in aspect of catalytic properties[J]. Catalysis Today, 2019, 324: 15-26. |
36 | 吴爱华, 唐建成, 覃德清, 等. 硬质合金用钴粉的发展现状[J]. 江西科学, 2014(4): 433-438. |
Wu A H, Tang J C, Qin D Q, et al. The development status of cobalt powders for cemented carbide[J]. Jiangxi Science, 2014(4): 433-438. | |
37 | 王忠华, 高鹏哲, 尚根峰, 等. 碳源对喷雾转化法制备WC-Co复合粉末的影响[J]. 功能材料, 2017(11): 11210-11215. |
Wang Z H, Gao P Z, Shang G F, et al. Effect of carbon source on the preparation of WC-CO composite powders by spray conversion process[J]. Journal of Functional Materials, 2017(11): 11210-11215. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Zhenbao LI, Chao LI, Hu WANG, Shaorui WANG, Quan LI. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608-3614. |
[6] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[7] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[8] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[9] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[10] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[15] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||