CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5376-5383.DOI: 10.11949/0438-1157.20221067
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiang GAO(), Yiran WANG, Chaoyang GUAN, Zhihua GE, Hongxia CHEN(
)
Received:
2022-07-29
Revised:
2022-10-21
Online:
2023-01-17
Published:
2022-12-05
Contact:
Hongxia CHEN
通讯作者:
陈宏霞
作者简介:
高翔(1998—),男,硕士研究生,2640793400@qq.com
基金资助:
CLC Number:
Xiang GAO, Yiran WANG, Chaoyang GUAN, Zhihua GE, Hongxia CHEN. Velocity/pressure field analysis of a single-bubble boiling on a diversion-enhanced microstructure surface[J]. CIESC Journal, 2022, 73(12): 5376-5383.
高翔, 王逸然, 关朝阳, 戈志华, 陈宏霞. 微结构导流作用强化单气泡沸腾的速度/压力场分析[J]. 化工学报, 2022, 73(12): 5376-5383.
Fig.6 Schematic diagram of the pressure field at the center of the groove width(y = 75 μm) and the pressure change curve at different heights(d = 1.5,t = 0.500 ms)
1 | 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135. |
Sun X K, Li Q. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135. | |
2 | Phan H T, Marty N C P, Colasson S . et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat Transfer, 2009, 52: 5459-5471. |
3 | 陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8): 2798-2808. |
Chen H X, Huang L B, Gong Y F. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2798-2808. | |
4 | Ahn H S, Chan L, Kim H, et al. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface[J]. Nuclear Engineering and Design, 2010, 240(10): 3350-3360. |
5 | Honda H, Takamastu H, Wei J J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness[J]. Journal of Heat Transfer, 2002, 124(2): 383-390. |
6 | Wei J J, Honda H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72[J]. International Journal of Heat and Mass Transfer, 2003, 46(21): 4059-4070. |
7 | Wei J J, Guo L J, Honda H. Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips[J]. Heat and Mass Transfer, 2005, 41(8): 744-755. |
8 | Kim S H, Lee G C, Kang J Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147. |
9 | Hsu W T, Lee D, Lee N, et al. Enhancement of flow boiling heat transfer using heterogeneous wettability patterned surfaces with varying inter-spacing[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120596. |
10 | Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux — a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952. |
11 | Yao Z, Lu Y W, Kandlikar S G. Effects of nanowire height on pool boiling performance of water on silicon chips[J]. International Journal of Thermal Sciences, 2011, 50(11): 2084-2090. |
12 | Bock B D, Bucci M, Markides C N, et al. Pool boiling of refrigerants over nanostructured and roughened tubes[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120387. |
13 | Bock B D, Bucci M, Markides C N, et al. Falling film boiling of refrigerants over nanostructured and roughened tubes: heat transfer, dryout and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120452. |
14 | Dewangan A K, Kumar A, Kumar R. Experimental study of nucleate boiling heat transfer of R-134a and R-600a on thermal spray coating surfaces[J]. International Journal of Thermal Sciences, 2016, 110: 304-313. |
15 | Dewangan A K, Kumar A, Kumar R. Experimental study of nucleate pool boiling of R-134a and R-410a on a porous surface[J]. Heat Transfer Engineering, 2019, 40(15): 1249-1258. |
16 | Moita A S, Teodori E, Moreira A L N. Influence of surface topography in the boiling mechanisms[J]. International Journal of Heat and Fluid Flow, 2015, 52: 50-63. |
17 | Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. |
18 | Chen Y, Mo D C, Zhao H B, et al. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1596-1600. |
19 | Teodori E, Moita A S, Moreira A L N. Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV[J]. International Journal of Heat and Mass Transfer, 2013, 66: 261-270. |
20 | Pontes P, Cautela R, Teodori E, et al. Experimental description of bubble dynamics and heat transfer processes occurring on the pool boiling of water on biphilic surfaces[J]. Applied Thermal Engineering, 2020, 178: 115507. |
21 | Nimkar N D, Bhavnani S H, Jaeger R C. Effect of nucleation site spacing on the pool boiling characteristics of a structured surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2829-2839. |
22 | Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196. |
23 | Song Y, Gong S, Vaartstra G, et al. Microtube surfaces for the simultaneous enhancement of efficiency and critical heat flux during pool boiling[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12629-12635. |
24 | Wen R F, Li Q, Wang W, et al. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65. |
25 | Chen H X, Sun Y, Xiao H Y, et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 447-464. |
26 | Yabuki T, Nakabeppu O. Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor[J]. International Journal of Heat and Mass Transfer, 2014, 76: 286-297. |
27 | Chen Z H, Utaka Y. On heat transfer and evaporation characteristics in the growth process of a bubble with microlayer structure during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2015, 81: 750-759. |
28 | Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230. |
29 | 陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317. |
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70: 1309-1317. | |
30 | Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||