CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4859-4871.DOI: 10.11949/0438-1157.20221121
• Thermodynamics • Previous Articles Next Articles
Xiaosong LUO(), Jinbao HUANG(), Mei ZHOU, Xin MU, Weiwei XU, Lei WU
Received:
2022-08-08
Revised:
2022-10-13
Online:
2022-12-06
Published:
2022-11-05
Contact:
Jinbao HUANG
通讯作者:
黄金保
作者简介:
罗小松(1999—),男,硕士研究生,luoxiaosong1008@126.com
基金资助:
CLC Number:
Xiaosong LUO, Jinbao HUANG, Mei ZHOU, Xin MU, Weiwei XU, Lei WU. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer[J]. CIESC Journal, 2022, 73(11): 4859-4871.
罗小松, 黄金保, 周梅, 牟鑫, 徐伟伟, 吴雷. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报, 2022, 73(11): 4859-4871.
Temperature/K | Hydrolysis[Path(1)]/ (kJ/mol) | Alcoholysis[Path(2)]/ (kJ/mol) | Ammonolysis[Path(3)]/ (kJ/mol) | Pure pyrolysis/ (kJ/mol) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1→TS1(1-a) | 1→TS4(1-b) | 1→TS5(1-c) | 1→TS7(2-a) | 1→TS10(2-b) | 1→TS12(2-c) | 1→TS15(3-a) | 1→TS22(3-b) | 1→TS24(3-c) | Six-membered ring | Four-membered ring | |||||
298 | 171.6 | 172.9 | 169.0 | 154.8 | 154.9 | 156.6 | 162.5 | 160.1 | 168.4 | 217.4 | 214.1 | 211.8 | 279.5 | 279.9 | 281.5 |
400 | 172.2 | 172.8 | 168.8 | 154.7 | 153.3 | 156.5 | 162.5 | 160.1 | 168.4 | 217.7 | 213.6 | 210.5 | 280.8 | 280.5 | 282.0 |
500 | 173.4 | 173.2 | 168.8 | 154.9 | 151.8 | 156.6 | 162.9 | 160.6 | 168.8 | 217.9 | 213.2 | 209.2 | 282.1 | 280.9 | 282.5 |
600 | 174.8 | 173.8 | 169.8 | 155.2 | 150.5 | 156.9 | 163.7 | 161.3 | 169.5 | 218.1 | 212.7 | 207.8 | 283.2 | 281.3 | 282.9 |
700 | 176.5 | 174.7 | 170.7 | 155.5 | 149.2 | 157.2 | 164.6 | 162.3 | 170.4 | 218.3 | 212.2 | 206.4 | 284.2 | 281.6 | 283.1 |
800 | 178.3 | 175.7 | 171.7 | 155.9 | 147.9 | 157.5 | 165.7 | 163.3 | 171.5 | 218.4 | 211.5 | 204.9 | 285.1 | 281.7 | 283.2 |
900 | 180.2 | 176.8 | 172.7 | 156.3 | 146.7 | 157.9 | 166.8 | 164.5 | 172.6 | 218.4 | 210.8 | 203.3 | 285.9 | 281.7 | 283.2 |
Table 1 Activation energy of initial reaction steps in pure pyrolysis and hydrolysis/alcoholysis/ammonolysis processes of butanediol terephthalate dimer at different temperatures
Temperature/K | Hydrolysis[Path(1)]/ (kJ/mol) | Alcoholysis[Path(2)]/ (kJ/mol) | Ammonolysis[Path(3)]/ (kJ/mol) | Pure pyrolysis/ (kJ/mol) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1→TS1(1-a) | 1→TS4(1-b) | 1→TS5(1-c) | 1→TS7(2-a) | 1→TS10(2-b) | 1→TS12(2-c) | 1→TS15(3-a) | 1→TS22(3-b) | 1→TS24(3-c) | Six-membered ring | Four-membered ring | |||||
298 | 171.6 | 172.9 | 169.0 | 154.8 | 154.9 | 156.6 | 162.5 | 160.1 | 168.4 | 217.4 | 214.1 | 211.8 | 279.5 | 279.9 | 281.5 |
400 | 172.2 | 172.8 | 168.8 | 154.7 | 153.3 | 156.5 | 162.5 | 160.1 | 168.4 | 217.7 | 213.6 | 210.5 | 280.8 | 280.5 | 282.0 |
500 | 173.4 | 173.2 | 168.8 | 154.9 | 151.8 | 156.6 | 162.9 | 160.6 | 168.8 | 217.9 | 213.2 | 209.2 | 282.1 | 280.9 | 282.5 |
600 | 174.8 | 173.8 | 169.8 | 155.2 | 150.5 | 156.9 | 163.7 | 161.3 | 169.5 | 218.1 | 212.7 | 207.8 | 283.2 | 281.3 | 282.9 |
700 | 176.5 | 174.7 | 170.7 | 155.5 | 149.2 | 157.2 | 164.6 | 162.3 | 170.4 | 218.3 | 212.2 | 206.4 | 284.2 | 281.6 | 283.1 |
800 | 178.3 | 175.7 | 171.7 | 155.9 | 147.9 | 157.5 | 165.7 | 163.3 | 171.5 | 218.4 | 211.5 | 204.9 | 285.1 | 281.7 | 283.2 |
900 | 180.2 | 176.8 | 172.7 | 156.3 | 146.7 | 157.9 | 166.8 | 164.5 | 172.6 | 218.4 | 210.8 | 203.3 | 285.9 | 281.7 | 283.2 |
Fig.12 Relationship between activation energy of initial reaction steps in hydrolysis/alcoholysis/ammonolysis processes of butanediol terephthalate dimer and temperature
Temperature/K | Hydrolysis[Path(1)] | Alcoholysis[Path(2)] | Ammonolysis[Path(3)] | ||||||
---|---|---|---|---|---|---|---|---|---|
ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | |
298 | 19.4 | -6.1 | 85.6 | -11.7 | -27.0 | 51.1 | 83.0 | 55.8 | 91.3 |
400 | 17.3 | -14.4 | 79.4 | -10.8 | -32.3 | 53.7 | 82.9 | 46.5 | 91.0 |
500 | 16.1 | -22.2 | 76.6 | -9.9 | -37.8 | 55.7 | 83.5 | 37.4 | 92.3 |
600 | 15.5 | -29.8 | 75.5 | -9.0 | -43.4 | 57.4 | 84.5 | 28.0 | 94.1 |
700 | 15.2 | -37.3 | 75.1 | -8.1 | -49.2 | 58.8 | 85.6 | 18.6 | 95.7 |
800 | 15.3 | -44.9 | 75.2 | -7.2 | -55.2 | 60.0 | 86.7 | 8.9 | 97.3 |
900 | 15.5 | -52.4 | 75.4 | -6.3 | -61.2 | 61.0 | 87.8 | -0.9 | 98.6 |
Table 2 ΔH/ΔG/ΔS of initial reaction steps in hydrolysis/alcoholysis/ammonolysis processes of butanediol terephthalate dimer at different temperatures
Temperature/K | Hydrolysis[Path(1)] | Alcoholysis[Path(2)] | Ammonolysis[Path(3)] | ||||||
---|---|---|---|---|---|---|---|---|---|
ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | ΔH/ (kJ/mol) | ΔG/ (kJ/mol) | ΔS/ (J/(mol·K)) | |
298 | 19.4 | -6.1 | 85.6 | -11.7 | -27.0 | 51.1 | 83.0 | 55.8 | 91.3 |
400 | 17.3 | -14.4 | 79.4 | -10.8 | -32.3 | 53.7 | 82.9 | 46.5 | 91.0 |
500 | 16.1 | -22.2 | 76.6 | -9.9 | -37.8 | 55.7 | 83.5 | 37.4 | 92.3 |
600 | 15.5 | -29.8 | 75.5 | -9.0 | -43.4 | 57.4 | 84.5 | 28.0 | 94.1 |
700 | 15.2 | -37.3 | 75.1 | -8.1 | -49.2 | 58.8 | 85.6 | 18.6 | 95.7 |
800 | 15.3 | -44.9 | 75.2 | -7.2 | -55.2 | 60.0 | 86.7 | 8.9 | 97.3 |
900 | 15.5 | -52.4 | 75.4 | -6.3 | -61.2 | 61.0 | 87.8 | -0.9 | 98.6 |
1 | Sablong R, Duchateau R, Koning C E, et al. Incorporation of a flame retardancy enhancing phosphorus-containing diol into poly(butylene terephthalate) via solid state polycondensation: a comparative study[J]. Polymer Degradation and Stability, 2011, 96(3): 334-341. |
2 | Nogales A, Sanz A, Ezquerra T A, et al. Molecular dynamics of poly(butylene tert-butyl isophthalate) and its copolymers with poly(butylene terephthalate) as revealed by broadband dielectric spectroscopy[J]. Polymer, 2006, 47(20): 7078-7084. |
3 | Cho M, Yang J, Noh S, et al. Production of PBT(polybutylene terephthalate) oligomer from recycled PET(polyethylene terephthalate)[J]. Korean Chemical Engineering Research, 2016, 54(4): 437-442. |
4 | 刘丽. 聚对苯二甲酸丁二醇酯在亚临界酸性水溶液和超/亚临界乙醇中的解聚研究[D]. 杭州: 浙江工业大学, 2011. |
Liu L. Depolymerization of polybutylene terephthalate in subcritical aqueous acid solution and sub/superctitical ethanol[D]. Hangzhou: Zhejiang University of Technology, 2011. | |
5 | 孙锴. 废塑料催化热解制备芳香烃的研究[D]. 杭州: 浙江大学, 2021. |
Sun K. Study on aromatics production from catalytic pyrolysis of waste plastics[D]. Hangzhou: Zhejiang University, 2021. | |
6 | Chiu S J, Wu Y S. A comparative study on thermal and catalytic degradation of polybutylene terephthalate[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 22-27. |
7 | 王媚娴, 潘志彦, 戴娟娟, 等. 超/亚临界水中聚对苯二甲酸乙二醇酯的解聚[J]. 高校化学工程学报, 2011, 25(5): 904-910. |
Wang M X, Pan Z Y, Dai J J, et al. Depolymerization of polyethylene terephthalate in sub- and supercritical water[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 904-910. | |
8 | 戴娟娟. 亚临界水中聚对苯二甲酸丁二醇酯的(催化)解聚研究[D]. 杭州: 浙江工业大学, 2010. |
Dai J J. Depolymerization of polybutylene terephthalate in subcritical water with and without catalyst[D]. Hangzhou: Zhejiang University of Technology, 2010. | |
9 | 杨伟. 聚酯复合材料无卤协效阻燃研究及机理的研究[D]. 合肥: 中国科学技术大学, 2012. |
Yang W. Investigations on synergistic flame retardancy and mechanisms of halogen-free flame retardant polyester composites[D]. Hefei: University of Science and Technology of China, 2012. | |
10 | Balabanovich A I. The effect of ammonium polyphosphate on the combustion and thermal decomposition behavior of poly(butylene terephthalate)[J]. Journal of Fire Sciences, 2003, 21(4): 285-298. |
11 | 黄婕, 齐文杰, 吴勇强, 等. 超临界甲醇降解对苯二甲酸丁二醇酯的研究[J]. 高分子学报, 2005(2): 309-312. |
Huang J, Qi W J, Wu Y Q, et al. Depolymerization of polybutylene terephthalate in supercritical methanol[J]. Acta Polymerica Sinica, 2005(2): 309-312. | |
12 | Levchik S V, Weil E D. A review on thermal decomposition and combustion of thermoplastic polyesters[J]. Polymers for Advanced Technologies, 2004, 15(12): 691-700. |
13 | 刘丽, 戴娟娟, 黄园园, 等. 聚对苯二甲酸丁二醇酯在亚临界水中的催化解聚[J]. 高校化学工程学报, 2012, 26(3): 524-530. |
Liu L, Dai J J, Huang Y Y, et al. Catalytic depolymerization of polybutylene terephthalate in subcritical water[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(3): 524-530. | |
14 | Goje A S. Auto-catalyzed hydrolytic depolymerization of poly(butylene terephthalate) waste at high temperature[J]. Polymer-Plastics Technology and Engineering, 2006, 45(2): 171-181. |
15 | 戴娟娟, 潘志彦. 聚对苯二甲酸丁二醇酯的解聚研究进展[J]. 环境科学与技术, 2010, 33(S1): 184-187. |
Dai J J, Pan Z Y. The research progress of depolymerization of polybutylene terephthalate[J]. Environmental Science & Technology, 2010, 33(S1): 184-187. | |
16 | Huang J, Yang J H, Chyu M K, et al. Continuous-distribution kinetics for degradation of polybutylene terephthalate (PBT) in supercritical methanol[J]. Polymer Degradation and Stability, 2009, 94(12): 2142-2148. |
17 | Balabanovich A I. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate)[J]. Polymer Degradation and Stability, 2004, 84(3): 451-458. |
18 | Huang J B, He C, Pan G Y, et al. A theoretical research on pyrolysis reactions mechanism of coumarone-contained lignin model compound[J]. Computational and Theoretical Chemistry, 2016, 1091: 92-98. |
19 | Long B, Xia Y, Bao J L, et al. Reaction of SO3 with HONO2 and implications for sulfur partitioning in the atmosphere[J]. Journal of the American Chemical Society, 2022, 144(20): 9172-9177. |
20 | Huang J B, Mu X, Luo X S, et al. DFT studies on pyrolysis mechanisms of tetrabromobisphenol A (TBBPA)[J]. Environmental Science and Pollution Research International, 2021, 28(48): 68817-68833. |
21 | Yang J H, Huang J, Chyu M K, et al. Degradation of poly(butylene terephthalate) in different supercritical alcohol solvents[J]. Journal of Applied Polymer Science, 2010, 116(4): 2269-2274. |
22 | Frisch M J, Trucks G W, Schlegel J, et al. Gaussian 09, revision C.01[CP]. 2010. |
23 | Huang J B, Li X S, Meng H X, et al. Studies on pyrolysis mechanisms of syndiotactic polystyrene using DFT method[J]. Chemical Physics Letters, 2020, 747: 137334. |
24 | Cheng H, Wu S B, Huang J B, et al. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol[J]. Analytical and Bioanalytical Chemistry, 2017, 409(10): 2531-2537. |
25 | Huang J B, Meng H X, Luo X S, et al. Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method[J]. Chemosphere, 2022, 291: 133112. |
26 | Kelleher P G, Wentz R P, Falcone D R. Hydrolysis of poly(butylene terephthalate)[J]. Polymer Engineering & Science, 1982, 22(4): 260-264. |
27 | Loyer C, Régnier G, Duval V, et al. PBT plasticity loss induced by oxidative and hydrolysis ageing[J]. Polymer Degradation and Stability, 2020, 181: 109368. |
28 | Goje A S, Chauhan Y P, Mishra S. Chemical recycling and kinetics of aqueous alkaline depolymerization of poly(butylene terephthalate) waste[J]. Chemical Engineering & Technology, 2004, 27(7): 790-799. |
29 | 黄婕, 齐文杰, 黄科, 等. 聚对苯二甲酸丁二醇酯在超临界甲醇中降解机理的研究[J]. 高校化学工程学报, 2007, 21(1): 48-53. |
Huang J, Qi W J, Huang K, et al. The depolymerization mechanism of polybutylene terephthalate in supercritical methanol[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(1): 48-53. | |
30 | Huang J, Huang K, Qi W J, et al. Process analysis of depolymerization polybutylene terephthalate in supercritical methanol[J]. Polymer Degradation and Stability, 2006, 91(10): 2527-2531. |
31 | Shibata M, Masuda T, Yosomiya R, et al. Depolymerization of poly(butylene terephthalate) using high-temperature and high-pressure methanol[J]. Journal of Applied Polymer Science, 2000, 77(14): 3228-3233. |
32 | Pan Z Y, Shi Y H, Liu L, et al. Depolymerization of poly(butylene terephthalate) in sub- and supercritical ethanol in a fused silica capillary reactor or autoclave reactor[J]. Polymer Degradation and Stability, 2013, 98(7): 1287-1292. |
33 | Balabanovich A I, Balabanovich A M, Engelmann J. Intumescence in poly(butylene terephthalate): the effect of 2-methyl-1, 2-oxaphospholan-5-one 2-oxide and ammonium polyphosphate[J]. Polymer International, 2003, 52(8): 1309-1314. |
34 | Xu B, Wu X, Qian L J, et al. Intumescent flame-retardant poly(1, 4-butylene terephthalate) with ammonium polyphosphate and a hyperbranched triazine charring-foaming agent: flame retardancy performance and mechanisms[J]. Journal of Fire Sciences, 2017, 35(4): 317-340. |
35 | Zhang W Z, Ren J W, Wei T, et al. Synergistic effect between ammonium polyphosphate and expandable graphite on flame-retarded poly(butylene terephthalate)[J]. Materials Research Express, 2018, 5(2): 025310. |
36 | 罗小松, 黄金保, 吴雷, 等. 聚对苯二甲酸丁二醇酯二聚体热降解机理的理论研究[J]. 燃料化学学报, DOI: 10.1016/S1872-5813(22)60043-4 . |
Luo X S, Huang J B, Wu L, et al. Theoretical study on thermal degradation mechanism of polybutylene terephthalate dimer[J]. Journal of Fuel Chemistry and Technology, DOI: 10.1016/S1872-5813(22)60043-4 . | |
37 | Huang J B, Liu C, Wu D, et al. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 98-108. |
38 | 黄金保, 刘朝, 魏顺安, 等. 丙三醇脱水反应机理的密度泛函理论研究[J]. 化学学报, 2010, 68(11): 1043-1049. |
Huang J B, Liu C, Wei S A, et al. Density functional theory study on the dehydration mechanism of glycerine[J]. Acta Chimica Sinica, 2010, 68(11): 1043-1049. | |
39 | 程小彩, 黄金保, 潘贵英, 等. 聚苯乙烯热降解机理的理论研究[J]. 燃料化学学报, 2019, 47(7): 884-896. |
Cheng X C, Huang J B, Pan G Y, et al. Theoretical study on thermal degradation mechanism of polystyrene[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 884-896. | |
40 | 黄金保, 童红, 曾桂生, 等. 丁醇醛和丁醇酸热解形成CO和CO2机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(8): 979-984. |
Huang J B, Tong H, Zeng G S, et al. Density functional theory studies on the formation mechanism of CO and CO2 in pyrolysis of hydroxyl butyraldehyde and butyric acid[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 979-984. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[9] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[10] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[11] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[15] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||