CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5414-5426.DOI: 10.11949/0438-1157.20221139
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Baowen WANG1(), Gang ZHANG1, Tongqing LIU1, Weiguang LI1, Mengjia WANG1, Deshun LIN1, Jingjing MA2
Received:
2022-08-15
Revised:
2022-11-07
Online:
2023-01-17
Published:
2022-12-05
Contact:
Baowen WANG
王保文1(), 张港1, 刘同庆1, 李炜光1, 王梦家1, 林德顺1, 马晶晶2
通讯作者:
王保文
作者简介:
王保文(1975—),男,博士,副教授,david-wn@163.com
基金资助:
CLC Number:
Baowen WANG, Gang ZHANG, Tongqing LIU, Weiguang LI, Mengjia WANG, Deshun LIN, Jingjing MA. Research on chemical looping reforming of CH4 by CeO2 doped CuFe2O4 oxygen carrier coupled with CO2 thermocatalytic reduction[J]. CIESC Journal, 2022, 73(12): 5414-5426.
王保文, 张港, 刘同庆, 李炜光, 王梦家, 林德顺, 马晶晶. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426.
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm | 平均晶粒/nm | |
---|---|---|---|---|---|
CuFe2O4 | CeO2 | ||||
100CF | 1.166 | 0.004 | 13.845 | 54.33 | — |
10Ce90CF | 2.933 | 0.011 | 11.288 | 32.76 | 29.58 |
20Ce80CF | 4.328 | 0.012 | 12.397 | 32.28 | 43.22 |
30Ce70CF | 4.799 | 0.016 | 13.251 | 29.93 | 39.06 |
40Ce60CF | 5.820 | 0.020 | 13.882 | 24.41 | 49.80 |
100Ce | 2.262 | 0.016 | 27.987 | — | 51.15 |
Table 1 Physical structure parameters of oxygen carrier
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm | 平均晶粒/nm | |
---|---|---|---|---|---|
CuFe2O4 | CeO2 | ||||
100CF | 1.166 | 0.004 | 13.845 | 54.33 | — |
10Ce90CF | 2.933 | 0.011 | 11.288 | 32.76 | 29.58 |
20Ce80CF | 4.328 | 0.012 | 12.397 | 32.28 | 43.22 |
30Ce70CF | 4.799 | 0.016 | 13.251 | 29.93 | 39.06 |
40Ce60CF | 5.820 | 0.020 | 13.882 | 24.41 | 49.80 |
100Ce | 2.262 | 0.016 | 27.987 | — | 51.15 |
1 | Wang Z, Kong Y H, Li W. Review on the development of China's natural gas industry in the background of “carbon neutrality”[J]. Nat. Gas Ind. B, 2022, 9(2): 132-140. |
2 | 何映龙, 于敦喜, 雷体蔓, 等. 铁基氧载体化学链CO2重整CH4方法制备合成气[J]. 化工学报, 2016, 67(12): 5222-5228. |
He Y L, Yu D X, Lei T M, et al. Chemical looping CO2/CH4 reforming using Fe-based oxygen carrier for syngas production[J]. CIESC Journal, 2016, 67(12): 5222-5228. | |
3 | 段一菲, 陈存壮, 张军社, 等. 化学链小分子转化研究进展[J]. 中国科学: 化学, 2020, 50(3): 337-365. |
Duan Y F, Chen C Z, Zhang J S, et al. Progress in chemical looping-based transformations of small molecules[J]. Sci.Sinica Chim., 2020, 50(3): 337-365. | |
4 | 沈阳, 赵坤, 何方, 等. 三维有序大孔钙钛矿型氧化物LaFe0.7Co0.3O3的合成及甲烷化学链水蒸气重整性能[J]. 燃料化学学报, 2016, 44(10): 1168-1176. |
Shen Y, Zhao K, He F, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. J. Fuel Chem. Technol., 2016, 44(10): 1168-1176. | |
5 | 朱珉, 陈时熠, 李蒙, 等. 化学链干重整联合制氢热力学分析及实验[J]. 化工学报, 2019, 70(6): 2244-2251. |
Zhu M, Chen S Y, Li M, et al. Thermodynamic and experimental analysis of chemical looping dry reforming with hydrogen production system[J]. CIESC Journal, 2019, 70(6): 2244-2251. | |
6 | Zhao K, He F, Huang Z, et al. La1- x Sr x FeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas[J]. Chin. J. Catal., 2014, 35(7): 1196-1205. |
7 | Najera M, Solunke R, Gardner T, et al. Carbon capture and utilization via chemical looping dry reforming[J]. Chem. Eng. Res. Des., 2011, 89(9): 1533-1543. |
8 | Alper E, Orhan Y O. CO2 utilization: developments in conversion processes[J]. Petrol., 2017, 3(1): 109-126. |
9 | Miller D D, Smith M, Shekhawat D. Interaction of manganese with aluminosilicate support during high temperature (1100℃) chemical looping combustion of the Fe-Mn-based oxygen carrier[J]. Fuel, 2020, 263: 116738. |
10 | Dai J, Whitty K J. Impact of fuel-derived chlorine on CuO-based oxygen carriers for chemical looping with oxygen uncoupling[J]. Fuel, 2020, 263: 116780. |
11 | Guerrero-Caballero J, Kane T, Haidar N, et al. Ni, Co, Fe supported on ceria and Zr doped ceria as oxygen carriers for chemical looping dry reforming of methane[J]. Catal. Today, 2019, 333: 251-258. |
12 | Cheng Z, Zhang L, Jin N N, et al. Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming[J]. Fuel Process. Technol., 2021, 218: 106873. |
13 | Wang B W, Li J, Ding N, et al. Chemical looping combustion of a typical lignite with a CaSO4–CuO mixed oxygen carrier[J]. Energy Fuels, 2017, 31(12): 13942-13954. |
14 | 汪根宝, 胡骏, 陈时熠, 等. 铁基载氧体化学链CH4/CO2转化研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 70-85. |
Wang G B, Hu J, Chen S Y, et al. Advances in Fe-based chemical looping technology for CH4/CO2 conversion[J]. J. Cent. South Univ.(Sci. Technol.), 2021, 52(1): 70-85. | |
15 | Galinsky N L, Shafiefarhood A, Chen Y G, et al. Effect of support on redox stability of iron oxide for chemical looping conversion of methane[J]. Appl. Catal., B, 2015, 164: 371-379. |
16 | Fan L S, Li F X. Chemical looping technology and its fossil energy conversion applications[J]. Ind. Eng. Chem. Res., 2010, 49(21): 10200-10211. |
17 | 袁聪, 蒲舸, 高杰, 等. 改性BaFe2O4载氧体生物质化学链气化特性[J]. 化工学报, 2022, 73(3): 1359-1368. |
Yuan C, Pu G, Gao J, et al. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier[J]. CIESC Journal, 2022, 73(3): 1359-1368. | |
18 | Qin L, Guo M Q, Liu Y, et al. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification[J]. Appl. Catal., B, 2018, 235: 143-149. |
19 | Yüzbasi N S, Abdala P M, Imtiaz Q, et al. The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by in situ X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(18): 12736-12745. |
20 | Wu H C, Chen T C, Wu J H, et al. The effect of an Fe promoter on Cu/SiO2 catalysts for improving their catalytic activity and stability in the water-gas shift reaction[J]. Catalysis Science & Technology, 2016, 6(15): 687-696. |
21 | Wang B W, Wang W S, Ma Q, et al. In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier[J]. Energy Fuels, 2016, 30(3): 2285-2294. |
22 | Wang B W, Yan R, Zhao H B, et al. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier[J]. Energy Fuels, 2011, 25(7): 3344-3354. |
23 | Kang K S, Kim C H, Cho W C, et al. Reduction characteristics of CuFe2O4 and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming[J]. Int. J. Hydrogen Energy, 2008, 33(17): 4560-4568. |
24 | 赵林洲, 郑燕娥, 李孔斋, 等. Ce1- x Ni x O y 氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380. |
Zhao L Z, Zheng Y E, Li K Z, et al. Application of Ce1- x Ni x O y oxygen carriers in chemical-looping reforming of methane coupled with CO2 reduction[J]. CIESC Journal, 2021, 72(8): 4371-4380. | |
25 | Wei G Q, Zhou H, Huang Z, et al. Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting[J]. Energy, 2021, 215: 119044. |
26 | 张军伟, 黄戒介, 房倚天, 等. 铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J]. 燃料化学学报, 2014, 42(02): 158-165. |
Zhang J W, Huang J J, Fang Y T, et al. Partial oxidation reforming of methane to synthesis gas by chemical looping using CeO2- modified Fe2O3 as oxygen carrier[J]. J. Fuel Chem. Technol., 2014, 42(2): 158-165. | |
27 | Galvita V V, Poelman H, Bliznuk V, et al. CeO2-modified Fe2O3 for CO2 utilization via chemical looping[J]. Ind. Eng. Chem. Res., 2013, 52(25): 8416-8426. |
28 | Kang K S, Kim C H, Bae K W, et al. Redox cycling of CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming/water splitting[J]. Int. J. Hydrogen Energy, 2010, 35(2): 568-576. |
29 | Selvan R K, Augustin C O, Šepelák V, et al. Synthesis and characterization of CuFe2O4/CeO2 nanocomposites[J]. Mater. Chem. Phys., 2008, 112(2): 373-380. |
30 | Chuayboon S, Abanades S, Rodat S. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chem. Eng. J., 2019, 356: 756-770. |
31 | Donohue M D, Aranovich G L. Adsorption hysteresis in porous solids[J]. J. Colloid Interface Sci., 1998, 205(1): 121-130. |
32 | Kim S M, Abdala P M, Margossian T, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. J. Am. Chem. Soc., 2017, 139(5): 1937-1949. |
33 | Zhang F S, Song Z L, Zhu J Z, et al. Factors influencing CH4-CO2 reforming reaction over Fe catalyst supported on foam ceramics under microwave irradiation[J]. Int. J. Hydrogen Energy, 2018, 43(20): 9495-9502. |
34 | Liu Y X, Dai H X, Deng J G, et al. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene[J]. Journal of Catalysis, 2013, 305: 146-153. |
35 | Wei Y G, Wang H, Li K Z. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas[J]. J. Rare Earths, 2010, 28(4): 560-565. |
36 | Wei Y G, Wang H, He F, et al. CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: thermodynamic analysis and experimental investigation[J]. J. Nat. Gas Chem., 2007, 16(1): 6-11. |
37 | Wang J K, Li K Z, Wang H, et al. Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane[J]. Fuel Process. Technol., 2022, 232: 107268. |
38 | Takalkar G, Bhosale R R, AlMomani F. Thermochemical splitting of CO2 using co-precipitation synthesized Ce0.75Zr0.2M0.05O2- δ (M=Cr, Mn, Fe, CO, Ni, Zn) materials[J]. Fuel, 2019, 256: 115834. |
39 | Lu C Q, Li K Z, Wang H, et al. Chemical looping reforming of methane using magnetite as oxygen carrier: structure evolution and reduction kinetics[J]. Appl. Energy, 2018, 211: 1-14. |
40 | Zhu X, Wei Y G, Wang H, et al. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. Int. J. Hydrogen Energy, 2013, 38(11): 4492-4501. |
41 | Zheng Y E, Li K Z, Wang H, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl. Catal., B, 2017, 202: 51-63. |
42 | Wang D C, Jin L J, Li Y, et al. Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3 [J]. Energy, 2018, 162: 542-553. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[7] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||