CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5056-5064.DOI: 10.11949/0438-1157.20221149
• Process system engineering • Previous Articles Next Articles
Huiying ZHANG1(), Weihua CAI2, Ming GAO1(), Yuhang WANG1, Suoying HE1
Received:
2022-08-15
Revised:
2022-09-21
Online:
2022-12-06
Published:
2022-11-05
Contact:
Ming GAO
张慧颖1(), 蔡伟华2, 高明1(), 王宇航1, 何锁盈1
通讯作者:
高明
作者简介:
张慧颖(1996—),女,博士研究生,1678481142@qq.com
基金资助:
CLC Number:
Huiying ZHANG, Weihua CAI, Ming GAO, Yuhang WANG, Suoying HE. Cold-start stack temperature prediction model for proton exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(11): 5056-5064.
张慧颖, 蔡伟华, 高明, 王宇航, 何锁盈. 质子交换膜燃料电池冷启动堆栈温度预测模型[J]. 化工学报, 2022, 73(11): 5056-5064.
Add to citation manager EndNote|Ris|BibTeX
冷启动预测工况 | 预测模型 | MRD | MSE | RMSE | R2 |
---|---|---|---|---|---|
1 | T | 0.8431 | 10.4632 | 3.2347 | 0.9237 |
K | 0.4553 | 2.6385 | 1.6243 | 0.9808 | |
2 | T | 1.4804 | 11.4387 | 3.3821 | 0.9052 |
K | 0.9537 | 6.4051 | 2.5308 | 0.9469 | |
3 | T | 1.1509 | 9.1069 | 3.0178 | 0.9147 |
K | 1.0844 | 17.2858 | 4.1576 | 0.8382 |
Table 1 Evaluation of real-time PEMFC stack temperature trend prediction results
冷启动预测工况 | 预测模型 | MRD | MSE | RMSE | R2 |
---|---|---|---|---|---|
1 | T | 0.8431 | 10.4632 | 3.2347 | 0.9237 |
K | 0.4553 | 2.6385 | 1.6243 | 0.9808 | |
2 | T | 1.4804 | 11.4387 | 3.3821 | 0.9052 |
K | 0.9537 | 6.4051 | 2.5308 | 0.9469 | |
3 | T | 1.1509 | 9.1069 | 3.0178 | 0.9147 |
K | 1.0844 | 17.2858 | 4.1576 | 0.8382 |
1 | 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520. |
Xu B. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC Journal, 2021, 72(3): 1512-1520. | |
2 | 邱玥, 周苏洋, 顾伟, 等. “碳达峰、碳中和”目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(4): 1301-1321. |
Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1321. | |
3 | 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171. |
Liu Y D, Guo H X, Ouyang X P. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171. | |
4 | Pahon E, Bouquain D, Hissel D, et al. Performance analysis of proton exchange membrane fuel cell in automotive applications[J]. Journal of Power Sources, 2021, 510: 230385. |
5 | Sürer M G, Arat H T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865-19875. |
6 | Zhu Y K, Lin R, Han L H, et al. Investigation on cold start of polymer electrolyte membrane fuel cells stacks with diverse cathode flow fields[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5580-5592. |
7 | Luo Y, Wu Y H, Li B, et al. Development and application of fuel cells in the automobile industry[J]. Journal of Energy Storage, 2021, 42: 103124. |
8 | 季玮琛, 林瑞. 质子交换膜燃料电池冷启动研究及策略优化现状[J]. 科学通报, 2022, 67(19): 2241-2257. |
Ji W C, Lin R. Strategy optimization of proton exchange membrane fuel cell cold start[J]. Chinese Science Bulletin, 2022, 67(19): 2241-2257. | |
9 | Luo Y Q, Jiao K. Cold start of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29-61. |
10 | Lin R, Zhong D, Lan S B, et al. Experimental validation for enhancement of PEMFC cold start performance: based on the optimization of micro porous layer[J]. Applied Energy, 2021, 300: 117306. |
11 | Lin R, Zhu Y K, Ni M, et al. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start[J]. Applied Energy, 2019, 241: 420-432. |
12 | Yang Z R, Jiao K, Wu K C, et al. Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems[J]. Energy, 2021, 222: 119910. |
13 | Li Q H, Liu Z Q, Sun Y, et al. A review on temperature control of proton exchange membrane fuel cells[J]. Processes, 2021, 9(2): 235. |
14 | Luo M Z, Zhang J, Zhang C Z, et al. Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied Thermal Engineering, 2022, 201: 117816. |
15 | Sun J Q, Yang X K, Sun S C, et al. Investigation on the temperature uniformity and efficiency of cold start-up for proton exchange membrane fuel cell stack based on catalytic hydrogen/oxygen method[J]. Journal of Power Sources, 2021, 496: 229755. |
16 | Zhong D, Lin R, Jiang Z H, et al. Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations[J]. Applied Energy, 2020, 264: 114626. |
17 | 林瑞, 蒋正华, 任应时, 等. 低温工况下燃料电池性能衰减及策略优化[J]. 同济大学学报(自然科学版), 2018, 46(5): 658-666. |
Lin R, Jiang Z H, Ren Y S, et al. Performance degradation and strategy optimization of PEMFCs under sub-freezing temperature[J]. Journal of Tongji University (Natural Science), 2018, 46(5): 658-666. | |
18 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
19 | 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154. |
Wei L, Liao Z H, Jiang F M. Numerical study on cold start of PEMFC with coolant circulation[J]. CIESC Journal, 2019, 70(S2): 146-154. | |
20 | 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427. |
Zhang X X, Gao Y X, Chen W R. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. | |
21 | Liu H, Chen J, Hissel D, et al. Short-term prognostics of PEM fuel cells: a comparative and improvement study[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6077-6086. |
22 | 冯能莲,赵倩倩,雍加望.基于非线性动态模型的质子交换膜燃料电池故障诊断[J].化工学报, 2022, 73(9): 3983-3993. |
Feng N L, Zhao Q Q, Yong J W. Model-based fault diagnosis method for proton exchange membrane fuel cell system[J]. CIESC Journal, 2022, 73(9): 3983-3993. | |
23 | Aubry J, Steiner N Y, Morando S, et al. Fuel cell diagnosis methods for embedded automotive applications[J]. Energy Reports, 2022, 8: 6687-6706. |
24 | Wang X C, Chen J Z, Quan S W, et al. Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells[J]. Applied Energy, 2020, 276: 115460. |
25 | Desantes J M, Novella R, Pla B, et al. A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications[J]. Applied Energy, 2022, 317: 119137. |
26 | 杨秋香. 人工神经网络法在PEMFC性能研究中的应用[J]. 电源技术, 2018, 42(9): 1341-1344. |
Yang Q X. Application of artificial neural network to proton exchange membrane fuel cell performance research[J]. Chinese Journal of Power Sources, 2018, 42(9): 1341-1344. | |
27 | Feng S S, Huang W T, Huang Z, et al. Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model[J]. Applied Energy, 2022, 317: 119158. |
28 | Musharavati F. Four dimensional bio-inspired optimization approach with artificial intelligence for proton exchange membrane fuel cell[J]. International Journal of Energy Research, DOI:10.1002/er.8007 . |
29 | Zhang C W, Chen S R, Gao H B, et al. State of charge estimation of power battery using improved back propagation neural network[J]. Batteries, 2018, 4(4): 69. |
30 | 颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657. |
Yan J G, Zheng S M, Guo P C, et al. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657. | |
31 | 胡兵, 王小娟, 徐立军, 等. 基于KMO-PCA-BP的燃料电池堆输出电压预测方法[J]. 太阳能学报, 2022, 43(3): 12-19. |
Hu B, Wang X J, Xu L J, et al. Output voltage prediction method of fuel cell stack based on KMO-PCA-BP[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 12-19. | |
32 | 李继清, 王爽, 段志鹏, 等. 基于ESMD-BP神经网络组合模型的中长期径流预报[J]. 应用基础与工程科学学报, 2020, 28(4): 817-832. |
Li J Q, Wang S, Duan Z P, et al. Medium and long-term runoff forecast based on ESMD-BP neural network combined model[J]. Journal of Basic Science and Engineering, 2020, 28(4): 817-832. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[7] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[10] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[11] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[12] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[13] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[14] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||