1 |
IEA. Perspectives for the energy transition: the role of energy efficiency[R/OL]. IEA: Paris, 2018. .
|
2 |
Ren Y, Liao Z W, Sun J Y, et al. Molecular reconstruction: recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357: 761-775.
|
3 |
Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695.
|
4 |
Liao Z W, Hu Y X, Tu G N, et al. Optimal design of hybrid cryogenic flash and membrane system[J]. Chemical Engineering Science, 2018, 179: 13-31.
|
5 |
Nair S K, Rao H N, Karimi I A. Framework for work-heat exchange network synthesis (WHENS)[J]. AIChE Journal, 2018, 64(7): 2472-2485.
|
6 |
Masso A H, Rudd D F. The synthesis of system designs(Ⅱ): Heuristic structuring[J]. AIChE Journal, 1969, 15(1): 10-17.
|
7 |
Smith R M. Chemical Process: Design and Integration[M]. New York: John Wiley & Sons, 2005.
|
8 |
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration (Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
|
9 |
Chang C L, Peccini A, Wang Y F, et al. Globally optimal synthesis of heat exchanger networks (Ⅰ): Minimal networks[J]. AIChE Journal, 2020, 66(7): e162667.
|
10 |
Björk K M, Westerlund T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption[J]. Computers & Chemical Engineering, 2002, 26(11): 1581-1593.
|
11 |
Aspelund A, Berstad D O, Gundersen T. An extended pinch analysis and design procedure utilizing pressure based exergy for subambient cooling[J]. Applied Thermal Engineering, 2007, 27(16): 2633-2649.
|
12 |
Onishi V C, Ravagnani M A S S, Caballero J A. Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908.
|
13 |
Huang K F, Karimi I A. Work-heat exchanger network synthesis (WHENS)[J]. Energy, 2016, 113: 1006-1017.
|
14 |
Zhuang Y, Zhang L, Liu L L, et al. Simultaneous synthesis of WHEN based on superstructure modelling considering thermodynamic and economic factors[J]. Computer Aided Chemical Engineering, 2018, 44: 1033-1038.
|
15 |
Lin Q C, Liao Z W, Sun J Y, et al. Targeting and design of work and heat exchange networks[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12471-12486.
|
16 |
Pavão L V, Costa C B B, Ravagnani M A S S. A new framework for work and heat exchange network synthesis and optimization[J]. Energy Conversion and Management, 2019, 183: 617-632.
|
17 |
Santos L F, Costa C B B, Caballero J A, et al. Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables[J]. Applied Energy, 2020, 262: 114441.
|
18 |
Lin Q C, Chang C L, Liao Z W, et al. Efficient strategy for the synthesis of work and heat exchange networks[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1756-1773.
|
19 |
Koopmans T C. Activity Analysis of Production and Allocation: Proceedings of a Conference[M]. New York: John Wiley & Sons, 1951.
|
20 |
Ehrgott M. Multicriteria Optimization[M]. Berlin, Heidelberg: Springer Berlin Herdelberg, 2000.
|
21 |
Onishi V C, Ravagnani M A S S, Jiménez L, et al. Multi-objective synthesis of work and heat exchange networks: optimal balance between economic and environmental performance[J]. Energy Conversion and Management, 2017, 140: 192-202.
|
22 |
Razib M S, Hasan M M F, Karimi I A. Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37: 262-277.
|
23 |
Pavão L V, Caballero J A, Ravagnani M A S S, et al. A pinch-based method for defining pressure manipulation routes in work and heat exchange networks[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109989.
|
24 |
Yu H S, Fu C, Vikse M, et al. Identifying optimal thermodynamic paths in work and heat exchange network synthesis[J]. AIChE Journal, 2019, 65(2): 549-561.
|
25 |
Vikse M, Watson H A J, Barton P I, et al. Nonsmooth formulation for handling unclassified process streams in the optimization of work and heat exchange networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9526-9539.
|
26 |
Pavão L V, Costa C B B, Ravagnani M A S S. Work and heat exchange network synthesis considering multiple electricity-related scenarios[J]. Energy, 2019, 182: 932-953.
|
27 |
Zhuang Y, Liu L L, Liu Q L, et al. Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060.
|
28 |
Duran M A, Grossmann I E. Simultaneous optimization and heat integration of chemical processes[J]. AIChE Journal, 1986, 32(1): 123-138.
|
29 |
Hauschild M Z, Goedkoop M, Guinée J, et al. Identifying best existing practice for characterization modeling in life cycle impact assessment[J]. The International Journal of Life Cycle Assessment, 2013, 18(3): 683-697.
|