CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3424-3436.DOI: 10.11949/0438-1157.20240480
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yudan WANG1(), Chen XU2, Da RUAN1, Jiang CHUN1, Xuehu MA1(
)
Received:
2024-04-30
Revised:
2024-06-13
Online:
2024-11-04
Published:
2024-10-25
Contact:
Xuehu MA
通讯作者:
马学虎
作者简介:
王禹丹(1999—),女,硕士研究生,wangyudan_0427@163.com
基金资助:
CLC Number:
Yudan WANG, Chen XU, Da RUAN, Jiang CHUN, Xuehu MA. Heat transfer characteristics of capillary pumping-replenishment evaporation on nanowire clusters surfaces with V-grooves[J]. CIESC Journal, 2024, 75(10): 3424-3436.
王禹丹, 徐晨, 阮达, 春江, 马学虎. V形沟槽纳米线团簇表面的毛细抽吸-补液蒸发传热特性研究[J]. 化工学报, 2024, 75(10): 3424-3436.
表面类型 | p/nm | d/nm | h/μm | a/μm |
---|---|---|---|---|
NW-A1 | 450 | 140 | 10 | 4.25 |
NW-A2 | 450 | 140 | 20 | 7.25 |
NW-A3 | 450 | 140 | 30 | 9.75 |
NW-B1 | 450 | 200 | 10 | 5.25 |
NW-B2 | 450 | 200 | 20 | 9.35 |
NW-B3 | 450 | 200 | 30 | 15.50 |
NW-C1 | 450 | 250 | 10 | 5.75 |
NW-C2 | 450 | 250 | 20 | 14.75 |
NW-C3 | 450 | 250 | 30 | 17.75 |
Table 1 Nanowire clusters surfaces with V-grooves and corresponding structural parameters
表面类型 | p/nm | d/nm | h/μm | a/μm |
---|---|---|---|---|
NW-A1 | 450 | 140 | 10 | 4.25 |
NW-A2 | 450 | 140 | 20 | 7.25 |
NW-A3 | 450 | 140 | 30 | 9.75 |
NW-B1 | 450 | 200 | 10 | 5.25 |
NW-B2 | 450 | 200 | 20 | 9.35 |
NW-B3 | 450 | 200 | 30 | 15.50 |
NW-C1 | 450 | 250 | 10 | 5.75 |
NW-C2 | 450 | 250 | 20 | 14.75 |
NW-C3 | 450 | 250 | 30 | 17.75 |
Fig.14 Comparison between model predicted and experimental results of total heat transfer coefficient for thin liquid film evaporation when the grooves are filled
Fig.16 Comparison between model predicted and experimental results of total heat transfer coefficient for thin liquid film evaporation on the NW-A3 surface at different groove liquid levels
1 | Zheng Y, Ma X H, Li Y, et al. Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density[J]. Applied Thermal Engineering, 2017, 111: 1548-1556. |
2 | Zeraatkardevin A, Jowkar S, Morad M R, et al. A three dimensional simulation of spray cooling and its evaporating liquid film generated on patterned surfaces[J]. International Journal of Multiphase Flow, 2022, 155: 104174. |
3 | Hu C Z, Pei Z X, Shi L, et al. Phase transition properties of thin liquid films with various thickness on different wettability surfaces[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106125. |
4 | Wang J X, Li Y Z, Liu X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2): 1-27. |
5 | Lu Z M, Salamon T R, Narayanan S, et al. Design and modeling of membrane-based evaporative cooling devices for thermal management of high heat fluxes[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(7): 1056-1065. |
6 | 中国科学院. 中国学科发展战略——电子设备热管理[M]. 北京: 科学出版社, 2022. |
Chinese Academy of Sciences. China's Discipline Development Strategy—Thermal Management of Electronic Devices[M]. Beijing: Science Press, 2022. | |
7 | Hanks D F, Lu Z M, Sircar J, et al. Nanoporous membrane device for ultra high heat flux thermal management[J]. Microsystems & Nanoengineering, 2018, 4: 1. |
8 | Ishikawa H, Ookawara S, Yoshikawa S, et al. Numerical study on mass transfer in a falling film on structured plates with micro-baffles[J]. Chemical Engineering and Processing-Process Intensification, 2022, 175: 108903. |
9 | Liang Q Q, Bu Y F, Men Z W, et al. Taylor flow bubble transport characteristics of low partial pressure CO2 absorption in a serpentine micro contactor[J]. Chemical Engineering and Processing-Process Intensification, 2022, 181: 109168. |
10 | Ye X, Hao T T, Chen Y S, et al. Liquid film transport around Taylor bubble in a microchannel with gas cavities[J]. Chemical Engineering and Processing-Process Intensification, 2020, 148: 107828. |
11 | Maroo S C, Chung J N. Heat transfer characteristics and pressure variation in a nanoscale evaporating meniscus[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3335-3345. |
12 | Yan C J, Ma H B. Analytical solutions of heat transfer and film thickness in thin-film evaporation[J]. Journal of Heat Transfer, 2013, 135(3): 031501. |
13 | Xiao R, Wang E N. Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays[J]. Langmuir, 2011, 27(17): 10360-10364. |
14 | Alhosani M H, Zhang T J. Dynamics of microscale liquid propagation in micropillar arrays[J]. Langmuir, 2017, 33(26): 6620-6629. |
15 | McClure E R, Carey V P. Nanoscale and macroscale effects of mineral deposition during water evaporation on nanoporous surfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26350-26359. |
16 | Mai T T, Lai C Q, Zheng H, et al. Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching[J]. Langmuir, 2012, 28(31): 11465-11471. |
17 | Lu L S, Sun J W, Liu Q P, et al. Influence of electrochemical deposition parameters on capillary performance of a rectangular grooved wick with a porous layer[J]. International Journal of Heat and Mass Transfer, 2017, 109: 737-745. |
18 | Lee J, Suh Y, Dubey P P, et al. Capillary wicking in hierarchically textured copper nanowire arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1546-1554. |
19 | Wang X F, Huang Z, Miao D Y, et al. Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070. |
20 | Poudel S, Zou A, Maroo S C. Wicking in cross-connected buried nanochannels[J]. The Journal of Physical Chemistry C, 2019, 123(38): 23529-23534. |
21 | Luo J L, Mo D C, Wang Y Q, et al. Biomimetic copper forest wick enables high thermal conductivity ultrathin heat pipe[J]. ACS Nano, 2021, 15(4): 6614-6621. |
22 | Antao D S, Adera S, Zhu Y Y, et al. Dynamic evolution of the evaporating liquid-vapor interface in micropillar arrays[J]. Langmuir, 2016, 32(2): 519-526. |
23 | Arends A A, Germain T M, Owens J F, et al. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature[J]. The Review of Scientific Instruments, 2018, 89(5): 055117. |
24 | Ong W L, Rupich S M, Talapin D V, et al. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays[J]. Nature Materials, 2013, 12(5): 410-415. |
25 | Chen H B, Wang W Z, Ge X Y, et al. Pixel-dependent laser-induced fluorescence method for determining thin liquid film thickness distribution[J]. Physics of Fluids, 2024, 36(1): 012111. |
26 | Che Z X, Wang T, Sun F Y, et al. Research on heat transfer capability of liquid film in three-phase contact line area[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123158. |
27 | Wang X M, Ghaffarizadeh S A, He X, et al. Ultrahigh evaporative heat transfer measured locally in submicron water films[J]. Scientific Reports, 2022, 12(1): 22353. |
28 | Wang H, Garimella S V, Murthy J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3933-3942. |
29 | Adera S, Antao D, Raj R, et al. Design of micropillar wicks for thin-film evaporation[J]. International Journal of Heat and Mass Transfer, 2016, 101: 280-294. |
30 | Mei X K, Xie Y X, Chai S T, et al. Analysis of liquid film evaporation in porous particles: toward optimal wick parameters for heat transfer in heat pipes[J]. ASME Journal of Heat and Mass Transfer, 2023, 145(11): 111003. |
31 | Chun J, Xu C, Zhang Y F, et al. Fast capillary wicking on hierarchical copper nanowired surfaces with interconnected V-grooves: implications for thermal management[J]. ACS Applied Nano Materials, 2021, 4(5): 5360-5371. |
32 | 春江. 超亲水表面液膜快速铺展及其强化机理的研究[D]. 大连: 大连理工大学, 2022. |
Chun J. Enhancing mechanism of liquid film fast spreading on superhydrophilic surfaces[D]. Dalian: Dalian University of Technology, 2022. | |
33 | Chun J, Xu C, Li Q F, et al. Microscopic observation of preferential capillary pumping in hollow nanowire bundles[J]. Langmuir, 2022, 38(1): 352-362. |
34 | Wen R F, Li Q, Wu J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33: 177-183. |
35 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
36 | Xu C, Zeng T, Chun J, et al. Capillary spreading of ethanol-water on hierarchical nanowire surfaces with interconnected V-groove[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130786. |
37 | Hu H, Sun Y. Molecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface[J]. Applied Physics Letters, 2013, 103(26): 263110. |
38 | Xu X, Carey V P. Film evaporation from a micro-grooved surface—an approximate heat transfer model and its comparison with experimental data[J]. Journal of Thermophysics and Heat Transfer, 1990, 4(4): 512-520. |
[1] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[2] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[3] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[4] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[5] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[8] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
[9] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[10] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[11] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[12] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[13] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[14] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[15] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 348
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||