CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 1914-1927.DOI: 10.11949/0438-1157.20230070
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jialin DAI1,2(), Weidong BI3, Yumei YONG1(), Wenqiang CHEN1,2, Hanyang MO1,4, Bing SUN5, Chao YANG1,2()
Received:
2023-02-02
Revised:
2023-04-19
Online:
2023-06-29
Published:
2023-05-05
Contact:
Yumei YONG, Chao YANG
代佳琳1,2(), 毕唯东3, 雍玉梅1(), 陈文强1,2, 莫晗旸1,4, 孙兵5, 杨超1,2()
通讯作者:
雍玉梅,杨超
作者简介:
代佳琳(1999—),女,硕士研究生,daijialin20@ipe.ac.cn
基金资助:
CLC Number:
Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs[J]. CIESC Journal, 2023, 74(5): 1914-1927.
代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927.
Add to citation manager EndNote|Ris|BibTeX
Ra | 本文Nuave结果 | 文献Nuave结果 | |||
---|---|---|---|---|---|
Ref.[ | 相对误差/% | Ref.[ | 相对误差/% | ||
1×103 | 1.423 | 1.432 | -0.628 | 1.424 | -0.070 |
1×104 | 1.757 | 1.768 | -0.626 | 1.771 | -0.791 |
1×105 | 4.234 | 4.308 | -1.718 | 4.324 | -2.081 |
1×106 | 8.362 | 8.605 | -2.824 | 8.597 | -2.734 |
Table 1 Verification results of fluid-solid coupling problems under natural covection
Ra | 本文Nuave结果 | 文献Nuave结果 | |||
---|---|---|---|---|---|
Ref.[ | 相对误差/% | Ref.[ | 相对误差/% | ||
1×103 | 1.423 | 1.432 | -0.628 | 1.424 | -0.070 |
1×104 | 1.757 | 1.768 | -0.626 | 1.771 | -0.791 |
1×105 | 4.234 | 4.308 | -1.718 | 4.324 | -2.081 |
1×106 | 8.362 | 8.605 | -2.824 | 8.597 | -2.734 |
Fig. 5 Volume fraction of the liquid phase in the process of heat transfer by conduction versus phase change considering natural convection(Pr=0.1, St=1, Rcp=Rs=Rfcp=Rfs=1)
Fig.7 Distribution of liquid volume fraction and enthalpy under different specific heat capacities of base and PCMs(Ra=2.5×104, Pr=0.1, St=1, Rs=Rfcp=Rfs=1, Fo=0.1)
Fig.9 Temperature distribution at different ratios of thermal conductivity coefficient of substrate to PCMs(Ra=2.5×104, Pr=0.1, St=1, Rcp=Rfcp=Rfs=1, Fo=0.05)
Fig.12 Phase distribution and enthalpy distribution under different specific heat capacities of solid phase PCMs(Ra=2.5×104, Pr=0.1, St=1, Rs=Rcp=Rfs=1, Fo=0.1)
1 | Oró E, De Gracia A, Castell A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
2 | 刘亮, 吴爱枝, 黄云, 等. 两类复合无机相变储热材料高温热稳定性和安全性研究[J]. 化工学报, 2020, 71(S2): 513-320. |
Liu L, Wu A Z, Huang Y, et al. Research on high temperature thermal stability and safety of two types of composite inorganic phase change thermal storage materials[J]. CIESC Journal, 2020, 71(S2): 513-320. | |
3 | Banu D, Feldman D, Haghighat F, et al. Energy-storing wallboard: flammability tests[J]. Journal of Materials in Civil Engineering, 1998, 10(2): 98-105. |
4 | Huang X, Sun C, Chen Z, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021, 170: 107151. |
5 | 张自仕. 含多孔骨架的储能材料固液相变界面传递机理研究[D]. 济南: 山东建筑大学, 2019. |
Zhang Z S. Study on solid-liquid interface transfer mechanism of energy storage materials with porous skeleton[D]. Jinan: Shandong Jianzhu University, 2019. | |
6 | Gokon N, Nakamura S, Hatamachi T, et al. Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production[J]. Energy, 2014, 68: 773-782. |
7 | 王君雷, 张第玲, 王昆, 等. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
Wang J L, Zhang D L, Wang K, et al. Carbonates/blast furnace slag form-stable phase change materials[J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. | |
8 | Atinafu D G, Yun B Y, Wi S, et al. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities[J]. Environmental Research, 2021, 195: 110853. |
9 | 杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65(S1): 95-100. |
Gao D Y, Chen Q Z, Chen L H. Visualized experiment of melting of paraffin waxin aluminum foam with open cells[J]. CIESC Journal, 2014, 65(S1): 95-100. | |
10 | Palazzolo M A, Dourges M-A, Magueresse A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461. |
11 | Liu Q, Feng X-B, He Y-L, et al. Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale[J]. Applied Thermal Engineering, 2019, 152: 319-337. |
12 | Liu Q, He Y L. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 438: 94-106. |
13 | Xu Y, Ren Q L, Zheng Z J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
14 | Yang J L, Yang L J, Xu C, et al. Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity[J]. International Journal of Heat & Mass Transfer, 2015, 84: 1008-1018. |
15 | Beckermann C, Viskanta R. Natural convection solid/liquid phase change in porous media[J]. International Journal of Heat & Mass Transfer, 1988, 31(1): 35-46. |
16 | Gong X Z, Mujumdar A S. Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger[J]. Applied Thermal Engineering, 1997, 17(6): 583-591. |
17 | Cornubert R, d'Humières D, Levermore D. A Knudsen layer theory for lattice gases[J]. Physica D: Nonlinear Phenomena, 1991, 47(1): 241-259. |
18 | Ziegler D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71(5): 1171-1177. |
19 | Ginzbourg I, Adler P M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model[J]. Journal de Physique Ⅱ, 1994, 4(2): 191-214. |
20 | He X Y, Zou Q S, Luo L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1): 115-136. |
21 | Pan C X, Luo L S, Miller C T. An evaluation of lattice Boltzmann schemes for porous medium flow simulation[J]. Computers & Fluids, 2006, 35(8): 898-909. |
22 | de Fabritiis G, Mancini A, Mansutti D, et al. Mesoscopic models of liquid/solid phase transitions[J]. International Journal of Modern Physics C, 1998, 09(8): 1405-1415. |
23 | Miller W, Succi S, Mansutti D. Lattice Boltzmann model for anisotropic liquid-solid phase transition[J]. Physical Review Letters, 2001, 86(16): 3578-3581. |
24 | Jiaung W S, Ho J R, Kuo C P. Lattice Boltzmann method for the heat conduction problem with phase change[J]. Numerical Heat Transfer, Part B: Fundamentals, 2001, 39(2): 167-187. |
25 | Chakraborty S, Chatterjee D. An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport[J]. Journal of Fluid Mechanics, 2007, 592: 155-175. |
26 | Chatterjee D, Chakraborty S. An enthalpy-based lattice Boltzmann model for diffusion dominated solid-liquid phase transformation[J]. Physics Letters A, 2005, 341(1/2/3/4): 320-330. |
27 | Chatterjee D, Chakraborty S. An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances[J]. International Journal of Thermal Sciences, 2008, 47(5): 552-559. |
28 | Chatterjee D. Lattice Boltzmann simulation of incompressible transport phenomena in macroscopic solidification processes[J]. Numerical Heat Transfer, Part B: Fundamentals, 2010, 58(1): 55-72. |
29 | Chatterjee D, Chakraborty S. A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow[J]. Physics Letters A, 2006, 351(4/5): 359-367. |
30 | Chatterjee D. An enthalpy-based thermal lattice Boltzmann model for non-isothermal systems[J]. Europhysics Letters, 2009, 86(1): 14004. |
31 | Luo K, Yao F J, Yi H L, et al. Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials[J]. Applied Thermal Engineering, 2015, 86: 238-250. |
32 | Li X Y, Ma T, Liu J, et al. Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method[J]. Applied Energy, 2018, 222: 92-103. |
33 | 杲东彦. 基于格子Boltzmann方法的泡沫金属内固液相变传热过程的研究[D]. 南京: 东南大学, 2011. |
Gao D Y. Study on the effect of thermal properties of porous skeleton on solid-liquid phase change based on LBM[D]. Nanjing: Southeast University, 2011. | |
34 | 宋林泉, 陈宝明, 郜凯凯. 基于LBM的多孔骨架热物性对固液相变的影响研究[J]. 山东建筑大学学报, 2017, 32(4): 356-364. |
Song L Q, Chen B M, Gao K K. Research on the influence of solid liquid phase change in porous skeleton media based on LBM method[J]. Journal of Shandong Jianzhu University, 2017, 32(4): 356-364. | |
35 | Dardis O, McCloskey J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media[J]. Physical Review E, 1998, 57(4): 4834-4837. |
36 | Luo L S, Liao W, Chen X W, et al. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83(5Pt2): 056710. |
37 | Lallemand P, Luo L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2): 406-421. |
38 | Huang R Z, Wu H Y, Cheng P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301. |
39 | Mencinger J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics, 2004, 198(1): 243-264. |
40 | Gallivan M A, Noble D R, Georgiadis J G, et al. An evaluation of the bounce-back boundary condition for lattice Boltzmann simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(3): 249-263. |
41 | House J M, Beckermann C, Smith T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 213-225. |
42 | Das M K, Reddy K S K. Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block[J]. International Journal of Heat and Mass Transfer, 2006, 49(25): 4987-5000. |
43 | 林琦. 微胶囊悬浮液双尺度建模及管内换热特性研究[D]. 大连: 大连理工大学, 2019. |
Lin Q. Two-scale modeling of microcapsule suspension and study on heat transfer characteristics in tube[D]. Dalian: Dalian University of Technology, 2019. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||