CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4523-4530.DOI: 10.11949/0438-1157.20210312
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hao ZHANG1,3(),Jiao WANG1,Ting MA2,Xinyi LI2,Jun LIU1,3,Qiuwang WANG2
Received:
2021-03-03
Revised:
2021-05-23
Online:
2021-09-05
Published:
2021-09-05
Contact:
Hao ZHANG
张浩1,3(),王姣1,马挺2,李馨怡2,刘军1,3,王秋旺2
通讯作者:
张浩
作者简介:
张浩(1989—),男,博士,副研究员,基金资助:
CLC Number:
Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity[J]. CIESC Journal, 2021, 72(9): 4523-4530.
张浩, 王姣, 马挺, 李馨怡, 刘军, 王秋旺. 超重条件下泡沫石墨-石蜡相变传热实验研究[J]. 化工学报, 2021, 72(9): 4523-4530.
Add to citation manager EndNote|Ris|BibTeX
材料 | 物性 | 数值 |
---|---|---|
十六烷 | 密度/(g/cm3) | 0.77@20℃ |
热导率/(W/(m·K)) | 0.12 | |
相变温度/℃ | 17.74 | |
相变潜热/(J/g) | 227.2 | |
比热容/(J/(kg·K)) | 1576@20℃ | |
黏度/(mPa·s) | 3.451 | |
泡沫石墨 | 密度/(g/cm3) | 0.5 |
热导率/(W/(m·K)) | 135 (沿X方向) | |
70 (YZ平面) | ||
比热容/(J/(g·K)) | 0.7 | |
孔径/μm | 400 | |
平均开孔率/% | 96 | |
有效孔隙率/% | 75 |
Table 1 Physical properties of materials
材料 | 物性 | 数值 |
---|---|---|
十六烷 | 密度/(g/cm3) | 0.77@20℃ |
热导率/(W/(m·K)) | 0.12 | |
相变温度/℃ | 17.74 | |
相变潜热/(J/g) | 227.2 | |
比热容/(J/(kg·K)) | 1576@20℃ | |
黏度/(mPa·s) | 3.451 | |
泡沫石墨 | 密度/(g/cm3) | 0.5 |
热导率/(W/(m·K)) | 135 (沿X方向) | |
70 (YZ平面) | ||
比热容/(J/(g·K)) | 0.7 | |
孔径/μm | 400 | |
平均开孔率/% | 96 | |
有效孔隙率/% | 75 |
1 | Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008, 46(1): 159-168. |
2 | Sun X Q, Zhang Q, Medina M A, et al. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China[J]. Applied Energy, 2014, 117: 95-103. |
3 | 宣子杰, 江燕涛, 王路路. 相变蓄冷技术在小型设备的应用和研究进展[J]. 制冷与空调(四川), 2020, 34(5): 558-564. |
Xuan Z J, Jiang Y T, Wang L L. Application and research progress of phase change cold storage technology in small equipment[J]. Refrigeration & Air Conditioning, 2020, 34(5): 558-564. | |
4 | Oró E, de Gracia A, Castell A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
5 | Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
6 | 杨天润, 孙锲, WENNERSTEN Ronald, 等. 相变蓄冷材料的研究进展[J]. 工程热物理学报, 2018, 39(3): 567-573. |
Yang T R, Sun Q, Wennersten R, et al. Review of phase change materials for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2018, 39(3): 567-573. | |
7 | 黄雪, 崔英德, 尹国强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2020, 48(1): 19-22, 30. |
Huang X, Cui Y D, Yin G Q, et al. Research progress of phase change materials[J]. New Chemical Materials, 2020, 48(1): 19-22, 30. | |
8 | Khan Z, Khan Z, Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132-158. |
9 | Bose P, Amirtham V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 81-100. |
10 | Qureshi Z A, Ali H M, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review[J]. International Journal of Heat and Mass Transfer, 2018, 127: 838-856. |
11 | Tauseef-Ur-rehman, Ali H M, Janjua M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
12 | 仇中柱, 姚远, 郑雨柔, 等. 相变蓄冷装置内传热及相变特性研究[J]. 热科学与技术, 2020, 19(5): 409-415. |
Qiu Z Z, Yao Y, Zheng Y R, et al. Study on heat transfer and phase change characteristics in phase change cold storage rig[J]. Journal of Thermal Science and Technology, 2020, 19(5): 409-415. | |
13 | Zhao C Y, Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 636-643. |
14 | Chen J Q, Yang D H, Jiang J H, et al. Research progress of phase change materials (PCMs) embedded with metal foam (a review)[J]. Procedia Materials Science, 2014, 4: 389-394. |
15 | Chintakrinda K, Weinstein R D, Fleischer A S. A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes[J]. International Journal of Thermal Sciences, 2011, 50(9): 1639-1647. |
16 | Alshaer W G, Nada S A, Rady M A, et al. Thermal management of electronic devices using carbon foam and PCM/nano-composite[J]. International Journal of Thermal Sciences, 2015, 89: 79-86. |
17 | Zhong Y J, Guo Q G, Li S Z, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1011-1014. |
18 | Lafdi K, Mesalhy O, Shaikh S. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J]. Journal of Applied Physics, 2007, 102(8): 083549. |
19 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
Jin G, Xiao A R, Liu M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
20 | Nield D A, Bejan A. Convection in Porous Media[M]. New York: Springer, 2013. |
21 | Huang R Z, Wu H Y. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change[J]. Journal of Computational Physics, 2014, 277: 305-319. |
22 | Zhang P, Meng Z N, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983. |
23 | Zhang Z Q, de He X. Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient[J]. Applied Thermal Engineering, 2017, 113: 298-308. |
24 | Chen Z Q, Gao D Y, Shi J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655. |
25 | 杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65: 95-100. |
Gao D Y, Chen Z Q, Chen L H. Visualized experiment of melting of paraffin wax in aluminum foam with open cells[J]. CIESC Journal, 2014, 65: 95-100. | |
26 | Li W Q, Qu Z G, He Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37: 1-9. |
27 | 张嘉杰, 屈治国. 金属泡沫中填充石蜡的相变换热特性实验研究[J]. 工程热物理学报, 2017, 38(7): 1441-1446. |
Zhang J J, Qu Z G. Experimental study on the heat transfer of metal foam filled in paraffin[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1441-1446. | |
28 | Mancin S, Diani A, Doretti L, et al. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams[J]. International Journal of Thermal Sciences, 2015, 90: 79-89. |
29 | Wang C H, Lin T, Li N, et al. Heat transfer enhancement of phase change composite material: copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965. |
30 | 马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201. |
Ma Y P, Hu J Y, Chen Q, et al. Study on heat storage performance enhancement of paraffin by metallic material[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2196-2201. | |
31 | 杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, 66(2): 497-503. |
Yang J L, Du X Z, Yang L J, et al. Visualized experiment on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015, 66(2): 497-503. | |
32 | 孙清. 固液相变蓄能与热控装置中相变传热机理的研究[D]. 扬州: 扬州大学, 2019. |
Sun Q. Study on the mechanism of phase change heat transfer in the solid-liquid phase change energy storage and heat control device[D]. Yangzhou: Yangzhou University, 2019. | |
33 | 张艳勇, 陈宝明, 李佳阳, 等. 基于孔隙尺度的多孔骨架对固液相变的影响[J]. 山东建筑大学学报, 2019, 34(6): 56-62, 84. |
Zhang Y Y, Chen B M, Li J Y, et al. Study on the influence of porous skeleton on solid-liquid phase change based on pore size[J]. Journal of Shandong Jianzhu University, 2019, 34(6): 56-62, 84. | |
34 | 王关皓, 庄依杰, 朱庆勇. 基于分形的多孔介质复合相变材料的储热特性[J]. 科学技术与工程, 2020, 20(29): 11858-11866. |
Wang G H, Zhuang Y J, Zhu Q Y. Heat storage characteristics of porous media composite phase change materials based on fractal[J]. Science Technology and Engineering, 2020, 20(29): 11858-11866. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[5] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[6] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[9] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[10] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[11] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[12] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[13] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[14] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[15] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||