CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 1939-1949.DOI: 10.11949/0438-1157.20230140
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bimao ZHOU1(), Shisen XU2, Xiaoxiao WANG1, Gang LIU2, Xiaoyu LI2, Yongqiang REN2, Houzhang TAN1()
Received:
2023-02-21
Revised:
2023-05-04
Online:
2023-06-29
Published:
2023-05-05
Contact:
Houzhang TAN
周必茂1(), 许世森2, 王肖肖1, 刘刚2, 李小宇2, 任永强2, 谭厚章1()
通讯作者:
谭厚章
作者简介:
周必茂(1997—),男,硕士研究生,2960474331@qq.com
基金资助:
CLC Number:
Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer[J]. CIESC Journal, 2023, 74(5): 1939-1949.
周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
Add to citation manager EndNote|Ris|BibTeX
序号 | 均相反应 | 指前因子Ai /(kg/(m2·s·Pa)) | 活化能Ei /(J/kmol) |
---|---|---|---|
1 | Vol | 4.26×105 | 1.08×108 |
2 | Vol + 1.21355 O2 | 9.2×106 | 8.02×107 |
3 | H2 + 0.5 O2 | 6.8×1015(β=-1) | 1.68×108 |
4 | CO + H2O | 2.75×1010 | 8.37×107 |
5 | CO + 0.5 O2 | 2.239×1012 | 1.674×108 |
6 | CO2 + H2 | 2.2×107 | 1.98×108 |
7 | C6H6 + 3 O2 | 1.58×1015 | 2.206×108 |
8 | CH4 + 0.5 O2 | 4.4×1011 | 1.25×108 |
9 | C6H6 + 6 H2O | 3.0×108 | 1.26×108 |
10 | C7H8 + 9 O2 | 1.6×108 | 1.255×108 |
11 | C6H6 + 7.5 O2 | 1.125×109 | 1.256×108 |
12 | C7H8 + H2 | 1.04×1012 | 2.47×108 |
13 | CH4 + H2O | 3×108 | 1.25×108 |
Table 1 Kinetic parameters of gas phase chemical reaction[21]
序号 | 均相反应 | 指前因子Ai /(kg/(m2·s·Pa)) | 活化能Ei /(J/kmol) |
---|---|---|---|
1 | Vol | 4.26×105 | 1.08×108 |
2 | Vol + 1.21355 O2 | 9.2×106 | 8.02×107 |
3 | H2 + 0.5 O2 | 6.8×1015(β=-1) | 1.68×108 |
4 | CO + H2O | 2.75×1010 | 8.37×107 |
5 | CO + 0.5 O2 | 2.239×1012 | 1.674×108 |
6 | CO2 + H2 | 2.2×107 | 1.98×108 |
7 | C6H6 + 3 O2 | 1.58×1015 | 2.206×108 |
8 | CH4 + 0.5 O2 | 4.4×1011 | 1.25×108 |
9 | C6H6 + 6 H2O | 3.0×108 | 1.26×108 |
10 | C7H8 + 9 O2 | 1.6×108 | 1.255×108 |
11 | C6H6 + 7.5 O2 | 1.125×109 | 1.256×108 |
12 | C7H8 + H2 | 1.04×1012 | 2.47×108 |
13 | CH4 + H2O | 3×108 | 1.25×108 |
序号 | 异相反应 | ni | ψi | Ai | Ep,i /(J/kmol) |
---|---|---|---|---|---|
1 | C+H2O | 0.64 | 3 | 4.18×104 Pa-0.64·s-1 | 2.52×108 |
2 | C+CO2 | 0.54 | 3 | 6.27×105 Pa-0.54·s-1 | 2.83×108 |
3 | C+0.5 O2 | 0.68 | 14 | 1.13×102 Pa-0.68·s-1 | 1.30×108 |
Table 2 Kinetic parameters of heterogeneous reaction of char[23]
序号 | 异相反应 | ni | ψi | Ai | Ep,i /(J/kmol) |
---|---|---|---|---|---|
1 | C+H2O | 0.64 | 3 | 4.18×104 Pa-0.64·s-1 | 2.52×108 |
2 | C+CO2 | 0.54 | 3 | 6.27×105 Pa-0.54·s-1 | 2.83×108 |
3 | C+0.5 O2 | 0.68 | 14 | 1.13×102 Pa-0.68·s-1 | 1.30×108 |
项目 | 质量流率/(kg/h) | ||
---|---|---|---|
O2 | H2O | coal | |
一段 | 63198.83 | 2000 | 69626.8 |
二段 | 0 | 0 | 2603.62 |
Table 3 Inlet boundary conditions
项目 | 质量流率/(kg/h) | ||
---|---|---|---|
O2 | H2O | coal | |
一段 | 63198.83 | 2000 | 69626.8 |
二段 | 0 | 0 | 2603.62 |
工业分析/%(mass, ar) | 元素分析/%(mass, d) | Qnet/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | O | |
3.88 | 11.09 | 32.15 | 52.88 | 69.78 | 4.27 | 1.25 | 0.25 | 9.22 | 28.3 |
Table 4 Properties of the coal
工业分析/%(mass, ar) | 元素分析/%(mass, d) | Qnet/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | O | |
3.88 | 11.09 | 32.15 | 52.88 | 69.78 | 4.27 | 1.25 | 0.25 | 9.22 | 28.3 |
项目 | CO/% | H2/% | CO2/% | 一段散热量/MW | 一段碳 转化率/% |
---|---|---|---|---|---|
工业数据 | 57.52 | 23.93 | 3.32 | 9~10.3 | 99.42 |
模拟数据 | 57.11 | 23.90 | 3.97 | 9.31 | 99.54 |
Table 5 Comparison of model verification data
项目 | CO/% | H2/% | CO2/% | 一段散热量/MW | 一段碳 转化率/% |
---|---|---|---|---|---|
工业数据 | 57.52 | 23.93 | 3.32 | 9~10.3 | 99.42 |
模拟数据 | 57.11 | 23.90 | 3.97 | 9.31 | 99.54 |
1 | Pin L R, Georg S L, Huang Q L, et al. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1057-1076. |
2 | 汪寿建. 现代煤气化技术发展趋势及应用综述[J]. 化工进展, 2016, 35(3): 653-664. |
Wang S J. Development and applicatin of modern coal gasification technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 653-664. | |
3 | 桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901. |
Gui X, Wang C W, Yun Z, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901. | |
4 | 吴海茜, 许利华. 碳捕集利用与封存研究进展[J]. 余热锅炉, 2021(2): 1-7. |
Wu H X, Xu L H. Research progress in carbon capture, utilization, and storage[J]. Waste Heat Boiler, 2021(2): 1-7. | |
5 | 柳康, 许世森, 李广宇, 等. 基于整体煤气化联合循环的燃烧前CO2捕集工艺及系统分析[J]. 化工进展, 2018, 37(12): 4897-4907. |
Liu K, Xu S S, Li G Y, et al. Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907. | |
6 | Xu S S, Ren Y Q, Wang B M, et al. Development of a novel 2-stage entrained flow coal dry powder gasifier[J]. Applied Energy, 2014, 113: 318-323. |
7 | 李小宇, 李广宇, 许世森, 等. 液态排渣煤气化炉炉内灰渣的流动和换热研究[J]. 中国电机工程学报, 2009, 29(14): 12-17. |
Li X Y, Li G Y, Xu S S, et al. Research on flow and heat transfer of slag film in gasifier with liquid slag-removal process[J]. Proceedings of the CSEE, 2009, 29(14): 12-17. | |
8 | Watanabe H, Kurose R. Modeling and simulation of coal gasification on an entrained flow coal gasifier[J]. Advanced Powder Technology, 2020, 31(7): 2733-2741. |
9 | Wang X X, Xu S S, Wang Y B, et al. Numerical simulation on the effect of burner bias angles on the performance of a two-stage entrained-flow gasifier[J]. ACS Omega, 2022, 7(8): 6640-6654. |
10 | 付彬, 徐庆洋. 两段式气化炉二段充分反应的条件及气化炉冷煤气效率变化的分析[J]. 煤化工, 2018, 46(6): 5-7. |
Fu B, Xu Q Y. Analysis on the second stage full reaction condition and cold gas efficiency change of two-stage gasifier[J]. Coal Chemical Industry, 2018, 46(6): 5-7. | |
11 | Zhang B B, Shen Z J, Liang Q F, et al. Numerical study of dynamic response analysis of slag behaviors in an entrained flow gasifier[J]. Fuel, 2018, 234: 1071-1080. |
12 | Zhang B B, Shen Z J, Liang Q F, et al. Modeling study of residence time of molten slag on the wall in an entrained flow gasifier[J]. Fuel, 2018, 212: 437-447. |
13 | Chen C X, Horio M, Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers[J]. Fuel, 2001, 80(10): 1513-1523. |
14 | Gong Y, Guo Q H, Zhu H W, et al. Refractory failure in entrained-flow gasifier: investigation of partitioned erosion characteristics in an industrial opposed multi-burner gasifier[J]. Chemical Engineering Science, 2019, 210: 115227. |
15 | 张宾宾. 气流床气化炉内壁面熔渣流动与传热过程研究[D]. 上海: 华东理工大学, 2018. |
Zhang B B. Modeling study of slag flow and heat transfer process on the wall for an entrained-flow gasifier[D]. Shanghai: East China University of Science and Technology, 2018. | |
16 | Xuan W W, Zhang J S, Xia D H. Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity[J]. Fuel, 2016, 176: 102-109. |
17 | Kim Y, Oh M S. Effect of cooling rate and alumina dissolution on the determination of temperature of critical viscosity of molten slag[J]. Fuel Processing Technology, 2010, 91(8): 853-858. |
18 | Kalmanovitch D P, Williamson J. Crystallization of Coal Ash Melts[M]. Washington, DC: American Chemical Society, 1986: 234-255. |
19 | Nowok J W. Viscosity and phase transformation in coal ash slags near and below the temperature of critical viscosity[J]. Energy & Fuels, 1994, 8(6): 1324-1336. |
20 | Ye I, Ryu C, Koo J H. Influence of critical viscosity and its temperature on the slag behavior on the wall of an entrained coal gasifier[J]. Applied Thermal Engineering, 2015, 87: 175-184. |
21 | Jeong H J, Seo D K, Hwang J. CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model[J]. Applied Energy, 2014, 123: 29-36. |
22 | Halama S, Spliethoff H. Numerical simulation of entrained flow gasification: reaction kinetics and char structure evolution[J]. Fuel Processing Technology, 2015, 138: 314-324. |
23 | Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel, 2002, 81(5): 539-546. |
24 | 杨帆, 范晓雷, 周志杰, 等. 随机孔模型应用于煤焦与CO2气化的动力学研究[J]. 燃料化学学报, 2005, 33(6): 671-676. |
Yang F, Fan X L, Zhou Z J, et al. Kinetics of coal char gasification with CO2 random pore model[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 671-676. | |
25 | 许世森, 周必茂, 王肖肖, 等. 高温下煤焦孔结构系数变化规律及其对气化速率影响的研究[J]. 燃料化学学报, 2022, 50(9): 1116-1125. |
Xu S S, Zhou B M, Wang X X, et al. Study on the variation of pore structure parameter of coal char at high temperature and its effect on gasification rate[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1116-1125. | |
26 | Laurendeau N M. Heterogeneous kinetics of coal char gasification and combustion[J]. Progress in Energy and Combustion Science, 1978, 4(4): 221-270. |
27 | Abu El-Rub Z. Biomass char as an in-situ catalyst for tar removal in gasification systems[D]. Enschede, Netherlands: University of Twente, 2008. |
28 | Seggiani M. Modelling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier[J]. Fuel, 1998, 77(14): 1611-1621. |
29 | Ren Y Q, Xu S S, Li G Y. Experimental study on the operational performance of an advanced two-stage entrained-flow coal gasifier[J]. Energy & Fuels, 2014, 28(8): 4911-4917. |
30 | 许世森, 王肖肖, 刘刚, 等. 煤粉粒径对HNCERI气化炉碳转化率与固/液渣层分布的影响[J]. 化工进展, 2022, 41(3): 1517-1527. |
Xu S S, Wang X X, Liu G, et al. Numerical simulation on the effect of coal size on slag distribution and carbon conversion efficiency of HNCERI gasifier[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1517-1527. | |
31 | Lin K, Shen Z J, Liang Q F, et al. The study of slag discharge behavior of entrained-flow gasifier based on the viscosity-temperature characteristics of different types of coals[J]. Fuel, 2021, 292: 120314. |
32 | Ge J, Wang Z H, Wan K D, et al. Slagging behavior modeling in coal gasifiers using two-way coupled slag model with CFD[J]. Fuel, 2020, 281: 118736. |
33 | Xu J L, Dai Z H, Liu H F, et al. Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier[J]. Chemical Engineering Science, 2017, 162: 41-52. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[4] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[7] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[8] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[11] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[12] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[13] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[14] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[15] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||