CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2999-3009.DOI: 10.11949/0438-1157.20230519
• Process system engineering • Previous Articles Next Articles
Guixian LI(), Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU()
Received:
2023-05-29
Revised:
2023-07-12
Online:
2023-08-31
Published:
2023-07-05
Contact:
Huairong ZHOU
李贵贤(), 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣()
通讯作者:
周怀荣
作者简介:
李贵贤(1966—),男,博士,教授,lgxwyf@163.com
基金资助:
CLC Number:
Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009.
李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009.
Add to citation manager EndNote|Ris|BibTeX
流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/(kg/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
1 | 25 | 0.1 | 18933 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 341089 |
2 | 40 | 0.1 | 17040 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 34350 |
3 | 42 | 0.13 | 40000 | 4.2 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
4 | 40 | 0.1 | 5232 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 230265 |
5 | 250 | 5 | 182948 | 0.04 | 0 | 93.22 | 5.59 | 0 | 0.93 | 0.22 | 855749 |
6 | 250 | 5 | 172636 | 3.04 | 0 | 89.82 | 2.93 | 0 | 1 | 3.21 | 855749 |
7 | 80.9 | 0.13 | 10323 | 50.1 | 0 | 0 | 0 | 0 | 0 | 49.9 | 258250 |
8 | 64.7 | 0.1 | 5138 | 0.12 | 0 | 0 | 0 | 0 | 0 | 99.88 | 164558 |
Table 1 Simulation results at key points of the SOEC-CO2tM process
流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/(kg/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
1 | 25 | 0.1 | 18933 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 341089 |
2 | 40 | 0.1 | 17040 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 34350 |
3 | 42 | 0.13 | 40000 | 4.2 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
4 | 40 | 0.1 | 5232 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 230265 |
5 | 250 | 5 | 182948 | 0.04 | 0 | 93.22 | 5.59 | 0 | 0.93 | 0.22 | 855749 |
6 | 250 | 5 | 172636 | 3.04 | 0 | 89.82 | 2.93 | 0 | 1 | 3.21 | 855749 |
7 | 80.9 | 0.13 | 10323 | 50.1 | 0 | 0 | 0 | 0 | 0 | 49.9 | 258250 |
8 | 64.7 | 0.1 | 5138 | 0.12 | 0 | 0 | 0 | 0 | 0 | 99.88 | 164558 |
单元 | 基准 | Sref | sf | EI |
---|---|---|---|---|
SOEC | H2产量 | 1000 m3/h(标准工况) | 0.60 | 11.0 |
CC | CO2产量 | 62.26 t/h | 0.67 | 87.14 |
MS | 合成气进料量 | 10.81 kmol/s | 0.67 | 142.8 |
MD | 甲醇进料量 | 3.66 kg/s | 0.67 | 12.04 |
Table 2 Summary of investment data for main equipment components
单元 | 基准 | Sref | sf | EI |
---|---|---|---|---|
SOEC | H2产量 | 1000 m3/h(标准工况) | 0.60 | 11.0 |
CC | CO2产量 | 62.26 t/h | 0.67 | 87.14 |
MS | 合成气进料量 | 10.81 kmol/s | 0.67 | 142.8 |
MD | 甲醇进料量 | 3.66 kg/s | 0.67 | 12.04 |
1 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
Zou C N, Li J M, Zhang X, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
2 | Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
3 | Chen Q Q, Lv M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620. |
4 | Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866. |
5 | 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179. |
Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets[J]. Natural Gas Industry, 2022, 42(4): 156-179. | |
6 | 赵雪莹, 李根蒂, 孙晓彤, 等. “双碳”目标下电解制氢关键技术及其应用进展[J]. 全球能源互联网, 2021, 4(5): 436-446. |
Zhao X Y, Li G D, Sun X T, et al. Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality targets[J]. Journal of Global Energy Interconnection, 2021, 4(5): 436-446. | |
7 | 张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性[J]. 广东化工, 2021, 48(18): 3-6, 24. |
Zhang Y K, Chen H J, Sun Z X, et al. Efficiency and economy of hydrogen production by electrolysis of water with high temperature solid oxide[J]. Guangdong Chemical Industry, 2021, 48(18): 3-6, 24. | |
8 | 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217. |
Zhang C J, Cai J, Zhang Y K, et al. Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 210-217. | |
9 | Andika R, Nandiyanto A B D, Putra Z A, et al. Co-electrolysis for power-to-methanol applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 227-241. |
10 | Rivera-Tinoco R, Farran M, Bouallou C, et al. Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction[J]. International Journal of Hydrogen Energy, 2016, 41(8): 4546-4559. |
11 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
12 | Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
13 | 孟文亮, 李贵贤, 周怀荣, 等. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
Meng W L, Li G X, Zhou H R, et al. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723. | |
14 | 杨庆春, 杨庆, 张金亮, 等. 耦合SOEC的煤制乙二醇新工艺开发与系统评价[J]. 化工进展, 2021, 40(11): 6061-6070. |
Yang Q C, Yang Q, Zhang J L, et al. Development and system assessment of a coal-to-ethylene glycol process coupled with SOEC[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6061-6070. | |
15 | Yang Q, Chu G Y, Yang Q C, et al. Process development and technoeconomic analysis of different integration methods of coal-to-ethylene glycol process and solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14519-14533. |
16 | Zhang H F, Wang L G, van Herle J, et al. Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer[J]. Applied Energy, 2020, 270: 115113. |
17 | Zhang W D, Jin X H, Tu W W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
18 | 季东, 王健, 王可, 等. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
Ji D, Wang J, Wang K, et al. Study on CO2 coupling green hydrogen to methanol with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575. | |
19 | 张婷, 魏顺安, 申威峰. 双效精馏分离不同浓度甲醇水溶液的节能分析[J]. 化工进展, 2019, 38(S1): 52-58. |
Zhang T, Wei S A, Shen W F. Energy-saving investigation of separation for methanol-water with different feed compositions through double-effect distillation[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 52-58. | |
20 | Wang D L, Li J W, Meng W L, et al. Integrated process for producing glycolic acid from carbon dioxide capture coupling green hydrogen[J]. Processes, 2022, 10(8): 1610. |
21 | Wang D L, Li J W, Meng W L, et al. A near-zero carbon emission methanol production through CO2 hydrogenation integrated with renewable hydrogen: process analysis, modification and evaluation[J]. Journal of Cleaner Production, 2023, 412: 137388. |
22 | Zhang H F, Desideri U. Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498. |
23 | Zhou H R, Wang J, Meng W L, et al. Comparative investigation of CO2-to-methanol process using different CO2 capture technologies[J]. Fuel, 2023, 338: 127359. |
24 | Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
25 | Chen J J, Qian Y, Yang S Y. Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5229-5239. |
26 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
27 | Askmar J, Carbol J. Carbon dioxide capture using phase changing solvents: a comparison with state-of-the-art MEA technologies[D]. Gothenburg: Chalmers University of Technology, 2017. |
28 | He C, Feng X A. Evaluation indicators for energy-chemical systems with multi-feed and multi-product[J]. Energy, 2012, 43(1): 344-354. |
29 | Yang Q C, Chu G Y, Zhang L H, et al. Pathways toward carbon-neutral coal to ethylene glycol processes by integrating with different renewable energy-based hydrogen production technologies[J]. Energy Conversion and Management, 2022, 258: 115529. |
30 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
31 | Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. |
32 | Harris K, Grim R G, Huang Z, et al. A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: opportunities and barriers to commercialization[J]. Applied Energy, 2021, 303: 117637. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[4] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[5] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[6] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[7] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[8] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
[9] | Xingshuo ZHANG, Xionglin LUO, Feng XU. Simulation closer to commercial process and prior process analysis based control loop configuration of FCCU reactor-regenerator system [J]. CIESC Journal, 2022, 73(2): 747-758. |
[10] | Dehong WANG, Lin SUN, Xionglin LUO. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system [J]. CIESC Journal, 2022, 73(12): 5469-5482. |
[11] | Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies [J]. CIESC Journal, 2022, 73(10): 4565-4575. |
[12] | JIA Xiaoping, SHI Lei, YANG Youqi. Challenges of eco-industrial parks development and opportunities for process systems engineering [J]. CIESC Journal, 2021, 72(5): 2373-2391. |
[13] | XIE Fuming, XU Feng, LUO Xionglin. Influence analysis of process scheduling on optimized operation strategy of acetylene hydrogenation reactor [J]. CIESC Journal, 2021, 72(5): 2718-2726. |
[14] | LI Haoran, QIU Tong. Sintering production state prediction model based on causal analysis [J]. CIESC Journal, 2021, 72(3): 1438-1446. |
[15] | WANG Dongliang, XIE Jiangpeng, ZHOU Huairong, MENG Wenliang, YANG Yong, LI Delei. Parameters analysis and energy integration in flue gas SO2 capture process based on MDEA [J]. CIESC Journal, 2021, 72(3): 1521-1528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||