CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4020-4036.DOI: 10.11949/0438-1157.20230650
• Reviews and monographs • Previous Articles Next Articles
Zhixuan TANG(), Wenhua GUO, Siyuan WU, Rijing ZHAO, Dong HUANG()
Received:
2023-06-30
Revised:
2023-09-06
Online:
2023-12-22
Published:
2023-10-25
Contact:
Dong HUANG
通讯作者:
黄东
作者简介:
汤志轩(1999—),男,硕士研究生, tangzhixuan@stu.xjtu.edu.cn
CLC Number:
Zhixuan TANG, Wenhua GUO, Siyuan WU, Rijing ZHAO, Dong HUANG. Research progress on optimizing two-phase refrigerant distribution and boiling heat transfer in microchannel evaporators[J]. CIESC Journal, 2023, 74(10): 4020-4036.
汤志轩, 郭文华, 吴思远, 赵日晶, 黄东. 微通道蒸发器优化两相制冷剂分配及沸腾传热研究进展[J]. 化工学报, 2023, 74(10): 4020-4036.
Fig.3 (a) U-shaped and Z-shaped manifold structure[13]; (b) Three types of horizontal header inlet structures[16-17]; (c) Different inlet modes and inclination angles of evaporators[19]; (d) Variable flat tube insertion depth structure[20]
Fig.5 (a) Flow states provided by four types of porous tubes[36]; (b) Orifice structure and the flow state formed after passing through the orifice structure[30]
Fig.10 (a) Schematic diagram of traditional microchannels and microchannels with triangular and fan-shaped cavities[66]; (b) The inner rib shape[67]; (c) Schematic diagram of cylindrical groove, circular transition groove, and rectangular rib structure[73]
8 | Brix W, Kærn M R, Elmegaard B. Modelling distribution of evaporating CO2 in parallel minichannels[J]. International Journal of Refrigeration, 2010, 33(6): 1086-1094. |
9 | Kulkarni T, Bullard C W, Cho K. Header design tradeoffs in microchannel evaporators[J]. Applied Thermal Engineering, 2004, 24(5/6): 759-776. |
10 | Bowers C D, Mai H, Elbel S, et al. Refrigerant distribution effects on the performance of microchannel evaporators[C]//International Refrigeration and Air Conditioning Conference. Purdue: Purdue e-Pubs, 2012. |
11 | Cho H, Cho K. Mass flow rate distribution and phase separation of R-22 in multi-microchannel tubes under adiabatic condition[J]. Microscale Thermophysical Engineering, 2004, 8(2): 129-139. |
12 | Dario E R, Tadrist L, Oliveira J L G, et al. Measuring maldistribution of two-phase flows in multi-parallel microchannels[J]. Applied Thermal Engineering, 2015, 91: 924-937. |
13 | Wang C C, Yang K S, Tsai J S, et al. Characteristics of flow distribution in compact parallel flow heat exchangers (part Ⅰ): Typical inlet header[J]. Applied Thermal Engineering, 2011, 31(16): 3226-3234. |
14 | 袁培, 李丹, 康浩杰, 等. 微细平行流通道换热器流量均布性试验研究[J]. 化学工程, 2017, 45(4): 34-38. |
Yuan P, Li D, Kang H J, et al. Experimental research on flow distribution uniformity of the micro parallel flow heat exchanger[J]. Chemical Engineering (China), 2017, 45(4): 34-38. | |
15 | Byun H W, Kim N H. Refrigerant distribution in a parallel flow heat exchanger having vertical headers and heated horizontal tubes[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 920-932. |
16 | Kim N H, Kim D Y, Byun H W. Effect of inlet configuration on the refrigerant distribution in a parallel flow minichannel heat exchanger[J]. International Journal of Refrigeration, 2011, 34(5): 1209-1221. |
17 | Kim N H, Byun H W, Sim Y S. Upward branching of two-phase refrigerant in a parallel flow minichannel heat exchanger[J]. Experimental Thermal and Fluid Science, 2013, 51: 189-203. |
18 | 袁鑫森, 袁俊飞, 王林, 等. 入口结构对微通道内两相流量分配特性影响[J]. 低温与超导, 2022, 50(7): 50-56, 62. |
Yuan X S, Yuan J F, Wang L, et al. Effect of inlet structure on two phase flow distribution in microchannel[J]. Cryogenics & Superconductivity, 2022, 50(7): 50-56, 62. | |
19 | Kim N H, Go M G. Horizontal distribution of two-phase refrigerant in parallel flat mini-channels[J]. Experimental Thermal and Fluid Science, 2018, 93: 139-152. |
20 | Marchitto A, Fossa M, Guglielmini G. Phase split in parallel vertical channels in presence of a variable depth protrusion header[J]. Experimental Thermal and Fluid Science, 2016, 74: 257-264. |
21 | Lee J K, Lee S Y. Distribution of two-phase annular flow at header-channel junctions[J]. Experimental Thermal and Fluid Science, 2004, 28(2/3): 217-222. |
22 | Kim N H, Han S P. Distribution of air-water annular flow in a header of a parallel flow heat exchanger[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 977-992. |
23 | Kim N H, Sin T R. Two-phase flow distribution of air-water annular flow in a parallel flow heat exchanger[J]. International Journal of Multiphase Flow, 2006, 32(12): 1340-1353. |
24 | Wijayanta A T, Miyazaki T, Koyama S. Liquid-vapor phase distribution in horizontal headers with upward minichannel-branching conduits[J]. Experimental Thermal and Fluid Science, 2016, 76: 264-274. |
25 | Zou Y, Hrnjak P S. Experiment and visualization on R134a upward flow in the vertical header of microchannel heat exchanger and its effect on distribution[J]. International Journal of Heat and Mass Transfer, 2013, 62: 124-134. |
26 | Zou Y, Hrnjak P S. Refrigerant distribution in the vertical header of the microchannel heat exchanger—measurement and visualization of R410A flow[J]. International Journal of Refrigeration, 2013, 36(8): 2196-2208. |
27 | Zou Y, Hrnjak P S. Effects of fluid properties on two-phase flow and refrigerant distribution in the vertical header of a reversible microchannel heat exchanger—comparing R245fa, R134a, R410A, and R32[J]. Applied Thermal Engineering, 2014, 70(1): 966-976. |
28 | Redo M A, Jeong J, Giannetti N, et al. Characterization of two-phase flow distribution in microchannel heat exchanger header for air-conditioning system[J]. Experimental Thermal and Fluid Science, 2019, 106: 183-193. |
29 | 徐肖肖, 张世杰, 李怡, 等. 制冷剂在微通道扁平T型管内的气液两相流相分配特性研究[J]. 化工学报, 2021, 72(4): 2057-2064. |
Xu X X, Zhang S J, Li Y, et al. Study on phase distribution characteristics of gas-liquid two-phase flow in micro-channel flat T-junction[J]. CIESC Journal, 2021, 72(4): 2057-2064. | |
30 | Ahmad M, Berthoud G, Mercier P. General characteristics of two-phase flow distribution in a compact heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 442-450. |
31 | 池帮杰, 代苏苏, 鲁进利, 等. 集流管结构对微通道蒸发器流量分配均匀性影响[J]. 制冷与空调, 2018, 18(4): 34-39. |
Chi B J, Dai S S, Lu J L, et al. Effect of header pipe structure on the uniformity of flow distribution in micro-channel evaporator[J]. Refrigeration and Air-Conditioning, 2018, 18(4): 34-39. | |
32 | 白璐, 朱春英, 付涛涛, 等. 并行微通道内气液相分配规律[J]. 化工学报, 2014, 65(1): 108-115. |
Bai L, Zhu C Y, Fu T T, et al. Gas-liquid flow distribution of parallel microchannels[J]. CIESC Journal, 2014, 65(1): 108-115. | |
33 | Kim N H, Lee E J, Byun H W. Two-phase refrigerant distribution in a parallel flow minichannel heat exchanger having horizontal headers[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7747-7759. |
34 | Zhang Q M, Hrnjak P S, Newell P A. An experimental investigation of R134a flow distribution in horizontal microchannel manifolds[R]. Urbana: USA, 2003. |
35 | Kim N H, Lee E J, Byun H W. Improvement of two-phase refrigerant distribution in a parallel flow minichannel heat exchanger using insertion devices[J]. Applied Thermal Engineering, 2013, 59(1/2): 116-130. |
36 | Kim N H, Kim C H, Shah Y, et al. Improvement of two-phase refrigerant distribution for upward flow of a parallel flow minichannel heat exchanger using insertion devices[J]. Applied Thermal Engineering, 2019, 160: 114065. |
37 | 袁培, 常宏旭, 李丹, 等. 微通道平行流换热器流量分配均匀性研究[J]. 低温与超导, 2019, 47(3): 44-48. |
Yuan P, Chang H X, Li D, et al. The flow distribution uniformity research on the microchannel parallel flow heat exchanger[J]. Cryogenics & Superconductivity, 2019, 47(3): 44-48. | |
1 | 张朝晖, 刘璐璐, 王若楠, 等. “双碳”目标下制冷空调行业技术发展的思考[J]. 制冷与空调, 2022, 22(1): 1-10. |
Zhang Z H, Liu L L, Wang R N, et al. Thoughts on technical development of refrigeration and air-conditioning industry under carbon peaking and carbon neutrality goals[J]. Refrigeration and Air-Conditioning, 2022, 22(1): 1-10. | |
2 | McNeil M A, Feng W, de la Rue du Can S, et al. Energy efficiency outlook in China’s urban buildings sector through 2030[J]. Energy Policy, 2016, 97: 532-539. |
3 | 张朝晖, 陈敬良, 高钰, 等. 《蒙特利尔议定书》基加利修正案对制冷空调行业的影响分析[J]. 制冷与空调, 2017, 17(1): 1-7, 15. |
Zhang Z H, Chen J L, Gao Y, et al. Analysis on the influence of Kigali Amendment to Montreal Protocol to refrigeration and air-conditioning industry[J]. Refrigeration and Air-Conditioning, 2017, 17(1): 1-7, 15. | |
4 | 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(S1): 10-15. |
Ge Y, Jiang W T. The research progress and application of the micro-channel heat exchanger[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 10-15. | |
5 | Zhang P, Hrnjak P S. Effect of some geometric parameters on performance of PF2 heat exchangers in periodic frosting[J]. International Journal of Refrigeration, 2010, 33(2): 334-346. |
6 | Li F, Wu S Y, Ma Z H, et al. Effect of surface coating on defrosting water drainage characteristics of vertical-fin microchannel frosting evaporator[J]. Applied Thermal Engineering, 2022, 208: 118220. |
7 | Brix W, Kærn M R, Elmegaard B. Modelling refrigerant distribution in microchannel evaporators[J]. International Journal of Refrigeration, 2009, 32(7): 1736-1743. |
38 | Marchitto A, Fossa M. Enhancing the phase distribution in parallel vertical channels with single and double chamber coaxial headers[J]. Applied Thermal Engineering, 2019, 155: 239-246. |
39 | Yu D J, Liu J W, Lv H B, et al. Effect of header configuration on refrigerant distribution in parallel flow microchannel evaporators[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 273-280. |
40 | 刘巍, 朱春玲. 分流板结构对微通道平行流蒸发器性能的影响[J]. 化工学报, 2012, 63(3): 761-766. |
Liu W, Zhu C L. Effects of deflector structure on performance of micro-channel evaporator with parallel flow[J]. CIESC Journal, 2012, 63(3): 761-766. | |
41 | 刘巍, 朱春玲. 分流板开孔面积对微通道换热器流量分配的影响[J]. 流体机械, 2014, 42(1): 6-10, 74. |
Liu W, Zhu C L. Flow distribution characteristics of deflector with different opening area[J]. Fluid Machinery, 2014, 42(1): 6-10, 74. | |
42 | 刘巍, 朱春玲. 分流板开孔面积对微通道平行流蒸发器性能的影响[J]. 制冷学报, 2014, 35(3): 58-64. |
Liu W, Zhu C L. Effects of open area of holes in deflector on performance of micro-channel evaporator with parallel flow[J]. Journal of Refrigeration, 2014, 35(3): 58-64. | |
43 | 高志成, 孟浩, 王燕令, 等. 平行流换热器内变孔径分流板分流特性研究[J]. 低温与超导, 2018, 46(5): 63-68, 87. |
Gao Z C, Meng H, Wang Y L, et al. Study on distribution characteristics of aperture—changeable deflector in parallel flow heat exchanger[J]. Cryogenics & Superconductivity, 2018, 46(5): 63-68, 87. | |
44 | Mahvi A J, Garimella S. Visualization of flow distribution in rectangular and triangular header geometries[J]. International Journal of Refrigeration, 2017, 76: 170-183. |
45 | Wu G M, Yan Z T, Zhuang D W, et al. Design method and application effects of embedded-clapboard distributor on refrigerant distribution among multi-tubes of micro-channel heat exchangers[J]. International Journal of Refrigeration, 2020, 119: 420-433. |
46 | Redo M A, Jeong J, Yamaguchi S, et al. Characterization and improvement of flow distribution in a vertical dual-compartment header of a microchannel heat exchanger[J]. International Journal of Refrigeration, 2020, 116: 36-48. |
47 | Park N H, Ha M Y. An experimental study on the effect of vertical header geometry on the two-phase refrigerant distribution and performance of a microchannel heat exchanger[J]. Applied Thermal Engineering, 2022, 209: 118287. |
48 | Panda K, Hirokawa T, Huang L. Design study of microchannel heat exchanger headers using experimentally validated multiphase flow CFD simulation[J]. Applied Thermal Engineering, 2020, 178: 115585. |
49 | Kawahara A, Chung P M Y, Kawaji M. Investigation of two-phase flow pattern void fraction and pressure drop in a microchannel[J]. International Journal of Multiphase Flow, 2002, 28(9): 1411-1435. |
50 | 马虎根, 涂文静, 谢荣建, 等. 微尺度通道内气液两相流型可视化研究[J]. 中国电机工程学报, 2011, 31(29): 85-90. |
Ma H G, Tu W J, Xie R J, et al. Visualization on flow pattern with vapor-liquid two-phase flow in microchannel[J]. Proceedings of the CSEE, 2011, 31(29): 85-90. | |
51 | Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels (part Ⅰ): Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394. |
52 | Sur A, Liu D. Adiabatic air-water two-phase flow in circular microchannels[J]. International Journal of Thermal Sciences, 2012, 53: 18-34. |
53 | Cubaud T, Ho C M. Transport of bubbles in square microchannels[J]. Physics of Fluids, 2004, 16(12): 4575-4585. |
54 | Li H Z, Hrnjak P. Visualization and measurement of reverse flow in an actual channel of a microchannel evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2346-2354. |
55 | Li H P, Hrnjak P. Flow visualization of R32 in parallel-port microchannel tube[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1-11. |
56 | Li H P, Hrnjak P. Flow patterns and plug/slug flow characteristic of R134a in a 0.643 mm microchannel tube[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1062-1073. |
57 | Li H P, Hrnjak P. Flow visualization of R1234ze(E) in a 0.643 mm microchannel tube[J]. International Journal of Heat and Mass Transfer, 2019, 136: 950-961. |
58 | Wang G D, Hao L, Cheng P. A four-zone model for saturated flow boiling in a microchannel of rectangular cross-section[J]. International Journal of Heat and Mass Transfer, 2010, 53(17/18): 3439-3448. |
59 | Vinoth R, Senthil Kumar D. Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink[J]. International Communications in Heat and Mass Transfer, 2017, 87: 270-276. |
60 | Moradikazerouni A, Afrand M, Alsarraf J, et al. Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board[J]. Applied Thermal Engineering, 2019, 150: 1078-1089. |
61 | Ghule K, Soni M S. Numerical heat transfer analysis of wavy micro channels with different cross sections[J]. Energy Procedia, 2017, 109: 471-478. |
62 | Sempértegui-Tapia D F, Ribatski G. The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels[J]. Experimental Thermal and Fluid Science, 2017, 89: 98-109. |
63 | 罗炜, 贺静, 罗兵, 等. 截面形状对微通道流动沸腾影响的数值研究[J]. 西安交通大学学报, 2019, 53(11): 101-111. |
Luo W, He J, Luo B, et al. Numerical study on the effect of cross-sectional shape of microchanneis on flow boiling[J]. Journal of Xi’an Jiaotong University, 2019, 53(11): 101-111. | |
64 | 马圣洁, 江海河, 程庭清. 分流式微通道换热器的结构设计和性能优化[J]. 工程热物理学报, 2023, 44(5): 1296-1303. |
Ma S J, Jiang H H, Cheng T Q. Structural design and performance optimization of manifold microchannel heat exchangers[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1296-1303. | |
65 | Yu M, Diallo T M O, Zhao X D, et al. Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe[J]. Energy, 2018, 158: 746-759. |
66 | Xia G D, Ma D D, Wang W, et al. Effects of different structures and allocations on fluid flow and heat transfer performance in 3D-IC integrated micro-channel interlayer cooling[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1167-1175. |
67 | Chai L, Xia G D, Wang H S. Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers[J]. International Journal of Thermal Sciences, 2016, 110: 1-11. |
68 | Chai L, Xia G D, Wang H S. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls (Part 1): Heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 97: 1069-1080. |
69 | Chai L, Xia G D, Wang H S. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls (Part 2): Pressure drop[J]. International Journal of Heat and Mass Transfer, 2016, 97: 1081-1090. |
70 | 朱飞跃, 朱崎峰, 苏瑞瑞, 等. 肋槽组合式微通道流动与传热特性研究[J]. 工程热物理学报, 2023, 44(9): 2504-2513. |
Zhu F Y, Zhu Q F, Su R R, et al. Study on flow and heat transfer characteristics of microchannel with combined ribs and grooves[J]. Journal of Engineering Thermophysics, 2023, 44(9): 2504-2513. | |
71 | Chuan L, Wang X D, Wang T H, et al. Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept[J]. International Communications in Heat and Mass Transfer, 2015, 65: 52-57. |
72 | 张哲, 张智弘, 赵恩惠, 等. 微通道散热器新型结构设计及流动与散热分析[J]. 低温工程, 2023(4): 38-47. |
Zhang Z, Zhang Z H, Zhao E H, et al. New structure design and analysis of flow and heat dissipation performance of microchannel heat sink[J]. Cryogenics, 2023(4): 38-47. | |
73 | Liu J, Xie G N, Simon T W. Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves[J]. International Journal of Heat and Mass Transfer, 2015, 81: 563-577. |
74 | Li P, Zhang D, Xie Y H, et al. Flow structure and heat transfer of non-Newtonian fluids in microchannel heat sinks with dimples and protrusions[J]. Applied Thermal Engineering, 2016, 94: 50-58. |
75 | Li P, Zhang D, Xie Y H. Heat transfer and flow analysis of Al2O3-water nanofluids in microchannel with dimple and protrusion[J]. International Journal of Heat and Mass Transfer, 2014, 73: 456-467. |
76 | Shen B B, Yan H B, Sunden B, et al. Forced convection and heat transfer of water-cooled microchannel heat sinks with various structured metal foams[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1043-1053. |
77 | 江河, 袁俊飞, 王林, 等. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
Jiang H, Yuan J F, Wang L, et al. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels[J]. CIESC Journal, 2023, 74(S1): 235-244. | |
78 | Prajapati Y K. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2019, 137: 1041-1052. |
79 | Mandev E, Manay E. Effects of surface roughness in multiple microchannels on mixed convective heat transfer[J]. Applied Thermal Engineering, 2022, 217: 119102. |
80 | 蓝伟, 钟显朴, 王亮, 等. 基于格子Boltzmann方法表面形貌对微通道对流换热的影响[J]. 推进技术, 2020, 41(12): 2774-2781. |
Lan W, Zhong X P, Wang L, et al. Effects of surface morphology on convection heat transfer in microchannels based on lattice boltzmann method[J]. Journal of Propulsion Technology, 2020, 41(12): 2774-2781. | |
81 | Taufiqurrakhman M, Istiyanto J, Putra N. Application of biomachining on copper for a minichannel heat exchanger[J]. Thermal Science and Engineering Progress, 2021, 26: 101128. |
82 | 叶仪, 殷晨波, 贾文华, 等. Gauss型粗糙表面对微通道流动与换热的影响[J]. 农业机械学报, 2013, 44(12): 294-300. |
Ye Y, Yin C B, Jia W H, et al. Effects of Guassian rough surface on fluid flow and heat transfer in microchannels[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 294-300. | |
83 | 高超, 朱志冰, 李海旺. 宽高比及表面粗糙度对矩形微尺度通道流动特性的影响[J]. 航空动力学报, 2018, 33(5): 1173-1177. |
Gao C, Zhu Z B, Li H W. Influence of aspect ratio and roughness on flow behavior in rectangle microchannels[J]. Journal of Aerospace Power, 2018, 33(5): 1173-1177. | |
84 | Ansari M Q, Zhou G B. Influence of structured surface roughness peaks on flow and heat transfer performances of micro- and mini-channels[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104428. |
85 | Cui J, Cui Y Y. Effects of surface wettability and roughness on the heat transfer performance of fluid flowing through microchannels[J]. Energies, 2015, 8(6): 5704-5724. |
86 | Yuan X, Tao Z, Li H W, et al. Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1575-1581. |
87 | Wu H Y, Cheng P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2547-2556. |
88 | Dai B M, Li M X, Ma Y T. Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels[J]. Applied Thermal Engineering, 2014, 67(1/2): 283-293. |
89 | Choi C, Shin J S, Yu D I,et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels[J]. Experimental Thermal and Fluid Science, 2011, 35(5): 816-824. |
90 | 周刊, 李蔚, 李俊业, 等. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88. |
Zhou K, Li W, Li J Y, et al. Flow boiling heat transfer characteristics of superhydrophilic modified surface in microchannels[J]. CIESC Journal, 2018, 69(S2): 82-88. | |
91 | Kim J, Lee J S. Numerical study on the effects of inertia and wettability on subcooled flow boiling in microchannels[J]. Applied Thermal Engineering, 2019, 152: 175-183. |
92 | Phan H T, Caney N, Marty P, et al. Flow boiling of water in a minichannel: the effects of surface wettability on two-phase pressure drop[J]. Applied Thermal Engineering, 2011, 31(11/12): 1894-1905. |
93 | 喻祖康,舒碧芬,黄妍,等. 基于表面亲水改性的微通道高热流流动沸腾换热性能优化[J].热能动力工程,2020, 35(12): 94-100. |
Yu Z K, Shu B F, Huang Y, et al. Optimization of flow boiling heat transfer performance in micro-channel under high heat flux based on surface hydrophilic modification[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 94-100. | |
94 | 周正龙, 舒碧芬, 江景祥, 等. 疏水表面改性对微通道换热和压降性能的影响[J]. 应用能源技术, 2019(7): 1-3. |
Zhou Z L, Shu B F, Jiang J X, et al. Effects of hydrophobic surface on heat transfer and pressure drop in microchannel[J]. Applied Energy Technology, 2019(7): 1-3. | |
95 | Zhou K, Coyle C, Li J Y, et al. Flow boiling in vertical narrow microchannels of different surface wettability characteristics[J]. International Journal of Heat and Mass Transfer, 2017, 109: 103-114. |
96 | Tan K Y, Hu Y W, He Y R. Effect of wettability on flow boiling heat transfer in a microtube[J]. Case Studies in Thermal Engineering, 2021, 26: 101018. |
97 | 王宜飞, 王清强, 姬德生, 等. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
Wang Y F, Wang Q Q, Ji D S, et al. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics[J]. CIESC Journal, 2022, 73(4): 1501-1514. | |
98 | Motezakker A R, Sadaghiani A K, Çelik S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174. |
99 | Gong S, Cheng P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216. |
100 | Ahmadi V E, Aboubakri A, Sadaghiani A K, et al. Effect of functional surfaces with gradient mixed wettability on flow boiling in a high aspect ratio microchannel[J]. Fluids, 2020, 5(4): 239. |
101 | Aboubakri A, Ahmadi V E, Celik S, et al. Effect of surface biphilicity on FC-72 flow boiling in a rectangular minichannel[J]. Frontiers in Mechanical Engineering, 2021, 7: 755580. |
102 | Wang H Z, Yang Y C, He M H, et al. Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2019,140: 587-597. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[4] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[7] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[10] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[11] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[13] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[14] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[15] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 620
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 402
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||