CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4914-4925.DOI: 10.11949/0438-1157.20230834
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xiaoqin YANG(), Xinyu LIU, Yuhan YANG, Yan YE, Qiong JIA, Haonan YANG, Zhihong QIN(
)
Received:
2023-08-15
Revised:
2023-11-03
Online:
2024-02-19
Published:
2023-12-25
Contact:
Zhihong QIN
杨小芹(), 刘馨雨, 杨玉寒, 叶彦, 贾琼, 杨浩男, 秦志宏(
)
通讯作者:
秦志宏
作者简介:
杨小芹(1981—),女,博士,副教授,xiaoqinyang0530@163.com
基金资助:
CLC Number:
Xiaoqin YANG, Xinyu LIU, Yuhan YANG, Yan YE, Qiong JIA, Haonan YANG, Zhihong QIN. Coal-based carbon foam coated with F-TiO2 for photocatalytic degradation of phenol[J]. CIESC Journal, 2023, 74(12): 4914-4925.
杨小芹, 刘馨雨, 杨玉寒, 叶彦, 贾琼, 杨浩男, 秦志宏. 煤基泡沫炭复合F-TiO2光催化降解苯酚[J]. 化工学报, 2023, 74(12): 4914-4925.
样品 | SBET/ (m2/g) | Dap/ nm | Vt/ (cm3/g) | Vmic/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
CCF-1 | 225.6 | 1.95 | 0.12 | 0.09 | 0.02 |
CCF-2 | 301.8 | 2.01 | 0.15 | 0.10 | 0.03 |
CCF-3 | 543.1 | 2.02 | 0.28 | 0.17 | 0.06 |
CCF-4 | 618.7 | 2.16 | 0.33 | 0.18 | 0.09 |
TiO2 | 188.8 | 4.62 | 0.22 | 0.00 | 0.18 |
F-TiO2 | 143.7 | 6.40 | 0.23 | 0.00 | 0.21 |
F-TiO2/CCF-2 | 230.1 | 4.06 | 0.23 | 0.04 | 0.15 |
Table 1 Pore structure parameters of CCFs and TiO2 catalysts
样品 | SBET/ (m2/g) | Dap/ nm | Vt/ (cm3/g) | Vmic/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
CCF-1 | 225.6 | 1.95 | 0.12 | 0.09 | 0.02 |
CCF-2 | 301.8 | 2.01 | 0.15 | 0.10 | 0.03 |
CCF-3 | 543.1 | 2.02 | 0.28 | 0.17 | 0.06 |
CCF-4 | 618.7 | 2.16 | 0.33 | 0.18 | 0.09 |
TiO2 | 188.8 | 4.62 | 0.22 | 0.00 | 0.18 |
F-TiO2 | 143.7 | 6.40 | 0.23 | 0.00 | 0.21 |
F-TiO2/CCF-2 | 230.1 | 4.06 | 0.23 | 0.04 | 0.15 |
Fig.8 UV-Vis diffuse reflectance spectra, the plotting of (F(r)hv)1/2vshv, PL spectra and ESR signals of DMPO-·OH after 1 min irradiation for the samples
1 | 侯晨涛, 张欣. WO3/TiOF2-TiO2复合催化剂的制备及其光催化性能研究[J]. 北京化工大学学报(自然科学版), 2021, 48(3): 36-47. |
Hou C T, Zhang X. Preparation and photocatalytic performance of a WO3/TiOF2-TiO2 composite photocatalyst[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(3): 36-47. | |
2 | 马荣, 孙杰, 李东辉, 等. 基于Cu/TiO2/C-Wood 复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022,73(4): 1695-1703. |
Ma R, Sun J, Li D H, et al. Self-floating high-efficient evaporative catalytic seawater hydrogen production system driven by concentrated solar energy based on Cu/TiO2/C-Wood composite [J]. CIESC Journal, 2022, 73(4): 1695-17037. | |
3 | Loo W W, Pang Y L, Lim S, et al. Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon[J]. Chemosphere, 2021, 272: 129588. |
4 | Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions ( Ⅰ ) : Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system[J]. Langmuir, 2000, 16(6): 2632-2641. |
5 | Zayadi R A, Abu Bakar F. Comparative study on the performance of Au/F-TiO2 photocatalyst synthesized from Zamzam water and distilled water under blue light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346: 338-350. |
6 | Gao Q Z, Si F Y, Zhang S S, et al. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8011-8019. |
7 | Yu Y, Wu H H, Zhu B L, et al. Preparation, characterization and photocatalytic activities of F-doped TiO2Nanotubes[J]. Catalysis Letters, 2008, 121(1): 165-171. |
8 | Le T K, Flahaut D, Martinez H, et al. Surface fluorination of single-phase TiO2 by thermal shock method for enhanced UV and visible light induced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014, 144: 1-11. |
9 | 钟永辉, 周琪, 刘家琴, 等. 氟化改性TiO2空心微球的制备及光催化性能[J]. 无机化学学报, 2013, 29(10): 2133-2139. |
Zhong Y H, Zhou Q, Liu J Q, et al. Preparation of fluorizated TiO2 hollow microspheres and their photocatalytic activity[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2133-2139. | |
10 | Qian X F, Ren M, Yue D T, et al. Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2017, 212: 1-6. |
27 | Lv K L, Cheng B, Yu J G, et al. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5349-5362. |
28 | Dozzi M V, Zuliani A, Grigioni I, et al. Photocatalytic activity of one step flame-made fluorine doped TiO2 [J]. Applied Catalysis A: General, 2016, 521: 220-226. |
29 | Dozzi M V, Selli E. Doping TiO2 with p-block elements: effects on photocatalytic activity[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 14: 13-28. |
30 | Babusenan A, Pandey B, Roy S C, et al. Charge transfer mediated photoluminescence enhancement in carbon dots embedded in TiO2 nanotube matrix[J]. Carbon, 2020, 161: 535-541. |
31 | Zhang Z Y, Xiong Z Y, Zhao C C, et al. In-situ carbon-coated TiO2 boosting the visible-light photocatalytic hydrogen evolution[J]. Applied Surface Science, 2021, 565: 150554. |
32 | Mrowetz M, Selli E. Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(6): 1100-1102. |
33 | Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions(Ⅱ): Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system[J]. Langmuir, 2000, 16(23): 8964-8972. |
11 | 杨玉寒, 杨小芹, 庞军国, 等. 泡沫材料负载TiO2光催化剂的研究进展[J]. 化工新型材料, 2021, 49(11): 294-299. |
Yang Y H, Yang X Q, Pang J G, et al. Research progress on TiO2 photocatalyst supported on foam material[J]. New Chemical Materials, 2021, 49(11): 294-299. | |
12 | Uricchio A, Nadal E, Plujat B, et al. Low-temperature atmospheric pressure plasma deposition of TiO2-based nanocomposite coatings on open-cell polymer foams for photocatalytic water treatment[J]. Applied Surface Science, 2021, 561: 150014. |
13 | Parale V G, Kim T, Phadtare V D, et al. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam[J]. Journal of Molecular Liquids, 2019, 277: 424-433. |
14 | Yang X Q, Jia Q, Pang J G, et al. Hierarchical porous N-TiO2/carbon foam composite for enhancement of photodegradation activity under simulated sunlight[J]. Diamond and Related Materials, 2022, 128: 109234. |
15 | Wang C, Shi Z H, Peng L, et al. Preparation of carbon foam-loaded nano-TiO2 photocatalyst and its degradation on methyl orange[J]. Surfaces and Interfaces, 2017, 7: 116-124. |
16 | 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(5): 939-958. |
Qin Z H. Theory of coal embedded structure model[J]. Journal of China University of Mining & Technology, 2017, 46(5): 939-958. | |
17 | Liu M, Qin Z H, Yang X Q, et al. Fabricating controllable hierarchical pores on smooth carbon sheet for synthesis of supercapacitor materials[J]. Vacuum, 2019, 168: 108806. |
18 | 王芳, 王雪芹, 程凯, 等. MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究[J]. 燃料化学学报, 2017, 45(8): 1001-1008. |
Wang F, Wang X Q, Cheng K, et al. Effect of MoS2 loading on the photocatalytic performance of MoS2/TiO2 nanocomposites in phenol degradation and the corresponding reaction mechanism analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1001-1008. | |
19 | Marques J, Gomes T D, Forte M A, et al. A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor[J]. Catalysis Today, 2019, 326: 36-45. |
20 | Pirsaheb M, Asadi A, Sillanpää M, et al. Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review[J]. Journal of Molecular Liquids, 2018, 271: 857-871. |
21 | 李彦涵, 梁淑芬, 刘孟浩, 等. 介孔生物质基活性炭负载TiO2的光催化降解动力学研究[J]. 太阳能学报, 2020, 41(7): 17-25. |
Li Y H, Liang S F, Liu M H, et al. Photocatalytic degradation kinetics of mesoporous bio-based activated carbon supported titanium dioxide[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 17-25. | |
22 | Zeng G N, You H Z, Du M M, et al. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of aquatic naphthalene under sunlight irradiation[J]. Chemical Engineering Journal, 2021, 412: 128498. |
23 | Yang Y H, Yang X Q, Jia Q, et al. Enhanced photocatalytic performance of (N, F) co-doped TiO2 loaded on coal-based hierarchical porous carbon foam under simulated sunlight[J]. Vacuum, 2023, 207: 111577. |
24 | Velasco L F, Tsyntsarski B, Petrova B, et al. Carbon foams as catalyst supports for phenol photodegradation[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 843-848. |
25 | Xu Q C, Zeng J X, Li X Y, et al. 3D nano-macroporous structured TiO2-foam glass as an efficient photocatalyst for organic pollutant treatment[J]. RSC Advances, 2016, 6(57): 51888-51893. |
26 | Luo H Y, Nie X, Li G Y, et al. Structural characterization and photocatalytic activity of hydrothermally synthesized mesoporous TiO2 for 2, 4, 6-tribromophenol degradation in water[J]. Chinese Journal of Catalysis, 2011, 32(6/7/8): 1349-1356. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[3] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[4] | Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption [J]. CIESC Journal, 2023, 74(4): 1587-1597. |
[5] | Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon [J]. CIESC Journal, 2023, 74(3): 1102-1112. |
[6] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[7] | Jian WANG, Zixuan LEI, Jiayu YAO, Jian LI, Yuhong LIU. Synthesis and curing kinetics of terephthalaldehyde phenolic resin [J]. CIESC Journal, 2022, 73(3): 1403-1415. |
[8] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
[9] | Yunfei WU, Xiaoli LUAN, Fei LIU. Near-infrared spectroscopy online detecting for 2,6-dimethylphenol purity based on transfer learning [J]. CIESC Journal, 2022, 73(2): 782-791. |
[10] | Hongyun YOU, Jingjun LIN, Kaiyue HUANG, Riyang SHU, Zhipeng TIAN, Chao WANG, Ying CHEN. Mechanism of solvent effect on hydrogenation of lignin-derived phenolic compounds [J]. CIESC Journal, 2022, 73(10): 4498-4506. |
[11] | Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts [J]. CIESC Journal, 2022, 73(10): 4410-4418. |
[12] | Li XU, Qianqiu WU, Zixuan LEI, Jiaxuan LI, Yuhong LIU. Crosslinking structure and mechanical properties of thermoplastic phenolic resin modified with siloxane prepolymer [J]. CIESC Journal, 2022, 73(10): 4734-4744. |
[13] | ZHU Xiaobing, LI Jiajia, LI Yining, YANG Hongyue, LI Xiaosong, LIU Jinglin. Oxygen evolution reaction over manganese oxides and the electrode-solution interface [J]. CIESC Journal, 2021, 72(S1): 398-405. |
[14] | FANG Lijun, WANG Jingmei, LIN Qiaojing, CHEN Jianhua, YANG Qian. Enrichment of phenol in water by dibenzo-18-crown ether-6/polyether block amide membrane [J]. CIESC Journal, 2021, 72(7): 3716-3727. |
[15] | HUANG Wenyuan, SUN Shijie, TANG Hongzhen, SU Zhifang, ZHONG Qindi, LIU Youyan, LI Qingyun. Phenol removal by the Alcaligenes sp. DN25 immobilized on the polyurethane foams [J]. CIESC Journal, 2021, 72(5): 2783-2791. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||