CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4611-4621.DOI: 10.11949/0438-1157.20230840
• Process system engineering • Previous Articles Next Articles
Received:2023-08-15
Revised:2023-10-16
Online:2024-01-22
Published:2023-11-25
Contact:
Guilian LIU
通讯作者:
刘桂莲
作者简介:赵丽文(1998—),女,博士研究生,zhaoliwen1234@stu.xjtu.edu.cn
基金资助:CLC Number:
Liwen ZHAO, Guilian LIU. Load-shift laws and bottleneck identification strategy of disturbed heat exchanger network[J]. CIESC Journal, 2023, 74(11): 4611-4621.
赵丽文, 刘桂莲. 扰动换热网络负荷迁移规律及瓶颈辨识策略[J]. 化工学报, 2023, 74(11): 4611-4621.
Add to citation manager EndNote|Ris|BibTeX
| 路径 | 换热设备 | |||||||
|---|---|---|---|---|---|---|---|---|
| E1 | E2 | E3 | E4 | HE1 | HE2 | CE1 | CE2 | |
| DPPC1-C1 | 0③ | 0③ | 0③ | 0③ | - | 0 | 0 | 0 |
| DPPC1-C3 | 0③ | - | 0③ | 0 | - | 0 | 0 | |
| DPPC1-H1 | 0③ | - | 0③ | 0③ | 0 | 0 | 0 | |
| DPPC1-H2 | - | 0③ | 0③ | 0③ | 0 | 0 | 0 | |
Table 1 The load-shift when CPC1 fluctuates
| 路径 | 换热设备 | |||||||
|---|---|---|---|---|---|---|---|---|
| E1 | E2 | E3 | E4 | HE1 | HE2 | CE1 | CE2 | |
| DPPC1-C1 | 0③ | 0③ | 0③ | 0③ | - | 0 | 0 | 0 |
| DPPC1-C3 | 0③ | - | 0③ | 0 | - | 0 | 0 | |
| DPPC1-H1 | 0③ | - | 0③ | 0③ | 0 | 0 | 0 | |
| DPPC1-H2 | - | 0③ | 0③ | 0③ | 0 | 0 | 0 | |
| 扰动值α | 响应对象 | 瓶颈位置 | 调整参数 | 节省年度总成本/(USD∙a-1) | |
|---|---|---|---|---|---|
| ΔQRO /kW | ΔAEx /m2 | ||||
| 0.8 | HE2 | E2、HE2 | 941 | 5.9、22.2 | 15683.5 |
| 1.2 | HE1 | E3 | -941 | 32.7 | 7892.9 |
Table 2 System variations when α changes to 0.8 and 1.2
| 扰动值α | 响应对象 | 瓶颈位置 | 调整参数 | 节省年度总成本/(USD∙a-1) | |
|---|---|---|---|---|---|
| ΔQRO /kW | ΔAEx /m2 | ||||
| 0.8 | HE2 | E2、HE2 | 941 | 5.9、22.2 | 15683.5 |
| 1.2 | HE1 | E3 | -941 | 32.7 | 7892.9 |
| 1 | Smith R. Chemical Process Design and Integration[M]. 2nd ed. West Sussex, England: John Wiley & Sons, 2016. |
| 2 | Gu S W, Liu L L, Zhang L, et al. Heat exchanger network synthesis integrated with flexibility and controllability[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1474-1484. |
| 3 | Cotrim S L, Machado A D, Leal G C L, et al. Parameters for cost estimation in shell and tube heat exchangers network synthesis: a systematic literature review on 30 years of research[J]. Applied Thermal Engineering, 2022, 213: 118801. |
| 4 | Peng F Y, Cui G M. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
| 5 | Isafiade A J, Short M. Simultaneous synthesis of flexible heat exchanger networks for unequal multi-period operations[J]. Process Safety and Environmental Protection, 2016, 103: 377-390. |
| 6 | Gu S W, Zhuang X N, Li C Y, et al. Multi-objective optimal design and operation of heat exchanger networks with controllability consideration[J]. Sustainability, 2022, 14(22): 15128. |
| 7 | Gu S W, Zhang L, Zhuang Y, et al. Integrated synthesis and control of heat exchanger networks with dynamic flexibility consideration[J]. Applied Thermal Engineering, 2023, 218: 119304. |
| 8 | Xu Y, Zhang L, Cui G M, et al. A heuristic approach to design a cost-effective and low-CO2 emission synthesis in a heat exchanger network with crude oil distillation units[J]. Energy, 2023, 271: 126972. |
| 9 | Lal N S, Atkins M J, Walmsley T G, et al. Insightful heat exchanger network retrofit design using Monte Carlo simulation[J]. Energy, 2019, 181: 1129-1141. |
| 10 | Zamora J M, Hidalgo-Muñoz M G, Pedroza-Robles L E, et al. Optimization and utilities relocation approach for the improvement of heat exchanger network designs[J]. Chemical Engineering Research and Design, 2020, 156: 209-225. |
| 11 | Liu J C, Zhang P P, Xie Q, et al. Flexibility analysis and design of heat exchanger network for syngas-to-methanol process[J]. International Journal of Coal Science & Technology, 2021, 8(6): 1468-1478. |
| 12 | Ali S M, Chang C T, Chang J S. Application of dynamic flexibility index for process design improvement[J]. Chemical Engineering Research and Design, 2022, 185: 368-376. |
| 13 | Mohanan K, Jogwar S S. Optimal operation of heat exchanger networks through energy flow redistribution[J]. AIChE Journal, 2022, 68(7): e17716. |
| 14 | Li N Q, Wang J H, Klemes J J, et al. A target-evaluation method for heat exchanger network optimisation with heat transfer enhancement[J]. Energy Conversion and Management, 2021, 238: 114154. |
| 15 | Klemeš J J, Wang Q W, Varbanov P S, et al. Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109644. |
| 16 | Picón-Núñez M, Minchaca-Mojica J I, Durán-Plazas L P. Selection of turbulence promoters for retrofit applications through thermohydraulic performance mapping[J]. Thermal Science and Engineering Progress, 2023, 42: 101876. |
| 17 | 肖武, 史朝霞, 姜晓滨, 等. 考虑管壳式换热器传热强化的换热网络综合研究进展[J]. 化工进展, 2018, 37(4): 1267-1275. |
| Xiao W, Shi Z X, Jiang X B, et al. Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1267-1275. | |
| 18 | Tian X, Yin C F, Lv D H, et al. Effect of catalyst deactivation on the energy consumption of gasoline-diesel hydrotreating process[J]. Energy & Fuels, 2018, 32(10): 10879-10890. |
| 19 | Zhao L W, Liu G L. Bottleneck-identification methodology and debottlenecking strategy for heat exchanger network with disturbance[J]. Chemical Engineering Science, 2023, 275: 118727. |
| 20 | Seborg D E, Edgar T F, Mellichamp D A, et al. Process Dynamics and Control[M]. 4th ed. New York: Wiley, 2016. |
| 21 | Linnhoff B, Kotjabasakis E. Downstream paths for operable process design[J]. Chemical Engineering Progress, 1986, 82: 23-28. |
| 22 | Fakheri A. Efficiency analysis of heat exchangers and heat exchanger networks[J]. International Journal of Heat and Mass Transfer, 2014, 76: 99-104. |
| 23 | Bergman T L, Lavine A S, Incropera F P, et al. Fundamentals of Heat and Mass Transfer[M]. 8th ed. New York: Wiley, 2018. |
| 24 | Zhang D, Lv D H, Yin C F, et al. Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network[J]. Energy, 2020, 205: 118070. |
| 25 | Al-Riyami B A, Klemes J, Perry S. Heat integration retrofit analysis of a heat exchanger network of a fluid catalytic cracking plant[J]. Applied Thermal Engineering, 2001, 21(13/14): 1449-1487. |
| 26 | Zhao L W, Liu G L. Dynamic coupling of reactor and heat exchanger network considering catalyst deactivation[J]. Energy, 2022, 260: 125161. |
| [1] | Wenting DUAN, Siyue REN, Xiao FENG, Yufei WANG. Distillation column pressure optimization integrated with the heat exchanger network [J]. CIESC Journal, 2022, 73(5): 2052-2059. |
| [2] | Jie XU, Shurong YU, Xuexing DING, Haitao JIANG, Junhua DING. Analysis of floating foil gas seal performance based on bump foil deformation [J]. CIESC Journal, 2022, 73(5): 2083-2093. |
| [3] | Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis [J]. CIESC Journal, 2022, 73(5): 2060-2072. |
| [4] | Zhiqiang ZHOU, Guomin CUI, Ling YANG, Xiubao MA, Yuan XIAO, Qiguo YANG. A hybrid algorithm based on parallel computing for heat exchanger network optimization with stream splits [J]. CIESC Journal, 2022, 73(2): 801-813. |
| [5] | SHANG Hao, CHEN Yuan, LI Xiaolu, WANG Bingqing, LI Yuntang, PENG Xudong. Study on the influence of nonlinear effect on performance of dry gas seal under film thickness disturbance [J]. CIESC Journal, 2021, 72(4): 2213-2222. |
| [6] | WEI Wei, CAI Xinyu, LIU Zaiwen, ZUO Min. Disturbance rejection control for wastewater treatment processes [J]. CIESC Journal, 2021, 72(3): 1567-1574. |
| [7] | PENG Xiaoyi, DONG Xuan, LIAO Zuwei, YANG Yao, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal design of heat integrated water allocation networks combining mathematical programming with graphical tools [J]. CIESC Journal, 2021, 72(2): 1047-1058. |
| [8] | Yue ZHOU, Helin ZHANG, Dingbin CHENG, Juncheng YIN. Simulation study on four-wheel booster refrigeration system [J]. CIESC Journal, 2020, 71(S1): 341-345. |
| [9] | Chenying LI, Linlin LIU, Lei ZHANG, Siwen GU, Jian DU. Controllable heat exchanger network synthesis under uncertainty via multi-scenario optimization [J]. CIESC Journal, 2020, 71(3): 1154-1162. |
| [10] | Lei WANG, Yuting CHEN, Yanyan XU, Shuang YE, Weiguang HUANG. Multi-objective constrained optimization method for heat exchanger network considering comprehensive economy and entransy [J]. CIESC Journal, 2020, 71(3): 1189-1201. |
| [11] | Haotian YE, Yining DONG, Shuang XU, Xiong ZOU, Zhenhua LI, Hongguang DONG. Multi-objective optimization of heat exchanger networks considering inherent safety [J]. CIESC Journal, 2019, 70(7): 2584-2593. |
| [12] | Zhengheng HAN, Guomin CUI, Yuan XIAO. Optimization of heat exchanger network by structure-fusion strategy [J]. CIESC Journal, 2019, 70(12): 4730-4740. |
| [13] | KANG Lixia, LIU Yongzhong. Design of multi-period heat exchanger networks for overdesign control [J]. CIESC Journal, 2018, 69(3): 1022-1029. |
| [14] | ZHAO Yue, SUN Lijun, WU Xia, CHEN Zengqiang, TANG Bing. Active disturbance rejection control on gas flow equipment by multivariable decoupling algorithm [J]. CIESC Journal, 2017, 68(9): 3482-3493. |
| [15] | BAO Zhongkai, CUI Guomin, CHEN Jiaxing. Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy [J]. CIESC Journal, 2017, 68(9): 3522-3531. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
