CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2060-2072.DOI: 10.11949/0438-1157.20211681
• Process system engineering • Previous Articles Next Articles
Weiwei LIU(),Guomin CUI(),Lu ZHANG,Yuan XIAO,Qiguo YANG,Guanhua ZHANG
Received:
2021-11-24
Revised:
2022-01-18
Online:
2022-05-24
Published:
2022-05-05
Contact:
Guomin CUI
通讯作者:
崔国民
作者简介:
刘薇薇(1997—),女,硕士研究生,基金资助:
CLC Number:
Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis[J]. CIESC Journal, 2022, 73(5): 2060-2072.
刘薇薇, 崔国民, 张璐, 肖媛, 杨其国, 张冠华. 一种应用于换热网络综合的阻尼优化方法[J]. 化工学报, 2022, 73(5): 2060-2072.
Add to citation manager EndNote|Ris|BibTeX
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
DS2-1 | η=0.6 | η=0.2 | η=0 | 1497798 |
DS2-2 | η=0.6 | η=0.2 | η=0.2 | 1504171 |
DS2-3 | η=0.4 | η=0.2 | η=0.2 | 1511764 |
DS2-4 | η=0.4 | η=0.2 | η=0 | 1495453 |
DS2-5 | η=0.2 | η=0.2 | η=0.2 | 1509360 |
DS2-6 | η=0.2 | η=0.2 | η=0 | 1496393 |
Table 1 Values of delay probability of phased delay strategy in different optimization stages
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
DS2-1 | η=0.6 | η=0.2 | η=0 | 1497798 |
DS2-2 | η=0.6 | η=0.2 | η=0.2 | 1504171 |
DS2-3 | η=0.4 | η=0.2 | η=0.2 | 1511764 |
DS2-4 | η=0.4 | η=0.2 | η=0 | 1495453 |
DS2-5 | η=0.2 | η=0.2 | η=0.2 | 1509360 |
DS2-6 | η=0.2 | η=0.2 | η=0 | 1496393 |
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
RWCE | — | — | — | 2898422 |
DS1 | η=0.2 | η=0.2 | η=0.2 | 2893376 |
DS2 | η=0.5 | η=0.2 | η=0 | 2892210 |
Table 2 Value of delay probability (η) of 9SP in different optimization stages
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
RWCE | — | — | — | 2898422 |
DS1 | η=0.2 | η=0.2 | η=0.2 | 2893376 |
DS2 | η=0.5 | η=0.2 | η=0 | 2892210 |
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Linnhoff等[ | Pinch | — | 13 | 33.02 | 25.31 | 2.96 × 106 |
Fieg等[ | GA | NIM-SWS | 14 | 31.34 | 23.62 | 2922298① |
霍兆义等[ | GA-PSO | NIM-SWS | 13 | 31.94 | 24.22 | 2922585① |
孙涛等[ | RWCE | NIM-SWS | 16 | 31.26 | 23.53 | 2920246① |
Pav?o等[ | SA-RFO | NIM-SWS | 14 | 32.48 | 24.76 | 2909906① |
鲍中凯等[ | RWCE | IU-SWS | 18 | 32.31 | 24.28 | 2906286① |
DS1-RWCE | NNM-SS | 20 | 31.54 | 23.87 | 2898422① | |
DS2-RWCE | NNM-SS | 19 | 31.51 | 23.79 | 2892210① |
Table 3 Comparison of results for 9SP
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Linnhoff等[ | Pinch | — | 13 | 33.02 | 25.31 | 2.96 × 106 |
Fieg等[ | GA | NIM-SWS | 14 | 31.34 | 23.62 | 2922298① |
霍兆义等[ | GA-PSO | NIM-SWS | 13 | 31.94 | 24.22 | 2922585① |
孙涛等[ | RWCE | NIM-SWS | 16 | 31.26 | 23.53 | 2920246① |
Pav?o等[ | SA-RFO | NIM-SWS | 14 | 32.48 | 24.76 | 2909906① |
鲍中凯等[ | RWCE | IU-SWS | 18 | 32.31 | 24.28 | 2906286① |
DS1-RWCE | NNM-SS | 20 | 31.54 | 23.87 | 2898422① | |
DS2-RWCE | NNM-SS | 19 | 31.51 | 23.79 | 2892210① |
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
RWCE | — | — | — | 1721621 |
DS1 | η=0.15 | η=0.15 | η=0.15 | 1717208 |
DS2 | η=0.5 | η=0.15 | η=0 | 1714524 |
Table 4 Value of delay probability (η) of 20SP in different optimization stages
Case | it∈[0, 5×107] | it∈(5×107, 2×108] | it∈(2×108, 8×108] | TAC/(USD/a) |
---|---|---|---|---|
RWCE | — | — | — | 1721621 |
DS1 | η=0.15 | η=0.15 | η=0.15 | 1717208 |
DS2 | η=0.5 | η=0.15 | η=0 | 1714524 |
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
陈帅等[ | SAA-QPSO | NS-SWS | 23 | 4.89 | 9.04 | 1753110 |
韩正恒等[ | RWCE | NW-NSS | 22 | 5.01 | 9.16 | 1727637 |
Rathjens等[ | HGA-SIR | NIM-SWS | 24 | 4.38 | 8.53 | 1715088① |
DS1-RWCE | NNM-SS | 24 | 4.49 | 8.64 | 1721621① | |
DS2-RWCE | NNM-SS | 22 | 4.27 | 8.42 | 1714524① |
Table 5 Comparison of results for 20SP
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
陈帅等[ | SAA-QPSO | NS-SWS | 23 | 4.89 | 9.04 | 1753110 |
韩正恒等[ | RWCE | NW-NSS | 22 | 5.01 | 9.16 | 1727637 |
Rathjens等[ | HGA-SIR | NIM-SWS | 24 | 4.38 | 8.53 | 1715088① |
DS1-RWCE | NNM-SS | 24 | 4.49 | 8.64 | 1721621① | |
DS2-RWCE | NNM-SS | 22 | 4.27 | 8.42 | 1714524① |
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Huo等[ | GA-PSO | Mixed NS and NIM-SWS | 16 | 442.37 | 38.80 | 7361190① |
Feyli等[ | GA | MQLP | 17 | 437.77 | 34.21 | 7128522 |
Bao等[ | OP-RWCE | NW-RWCE | 19 | 413.61 | 10.04 | 6869610① |
Pav?o等[ | SA-RFO | NIM-SWS | 18 | 413.07 | 9.50 | 6712551① |
Rathjens等[ | HGA-SIR | NIM-SWS | 18 | 413.02 | 9.70 | 6657080① |
DS2-RWCE | NNM-SS | 18 | 413.08 | 9.52 | 6651937① |
Table 6 Comparison of results for 16SP
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Huo等[ | GA-PSO | Mixed NS and NIM-SWS | 16 | 442.37 | 38.80 | 7361190① |
Feyli等[ | GA | MQLP | 17 | 437.77 | 34.21 | 7128522 |
Bao等[ | OP-RWCE | NW-RWCE | 19 | 413.61 | 10.04 | 6869610① |
Pav?o等[ | SA-RFO | NIM-SWS | 18 | 413.07 | 9.50 | 6712551① |
Rathjens等[ | HGA-SIR | NIM-SWS | 18 | 413.02 | 9.70 | 6657080① |
DS2-RWCE | NNM-SS | 18 | 413.08 | 9.52 | 6651937① |
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Zhang等[ | PPSO | NS-SWS | 47 | 11.45 | 8.15 | 1939149 |
孙涛等[ | RWCE | NIM-SWS | 44 | 11.87 | 8.56 | 1933752① |
Nemet等[ | GUROBI-DICOPT | TransHEN | 44 | 10.65 | 7.35 | 1.9288×106① |
Pav?o等[ | SA-RFO | NIM-SWS | 42 | — | — | 1900614① |
DS2-RWCE | NNM-SS | 40 | 11.02 | 7.72 | 1877898① |
Table 7 Comparison of results for 39SP
References | Method | Formulation | Units | QCU/MW | QHU/MW | TAC/(USD/a) |
---|---|---|---|---|---|---|
Zhang等[ | PPSO | NS-SWS | 47 | 11.45 | 8.15 | 1939149 |
孙涛等[ | RWCE | NIM-SWS | 44 | 11.87 | 8.56 | 1933752① |
Nemet等[ | GUROBI-DICOPT | TransHEN | 44 | 10.65 | 7.35 | 1.9288×106① |
Pav?o等[ | SA-RFO | NIM-SWS | 42 | — | — | 1900614① |
DS2-RWCE | NNM-SS | 40 | 11.02 | 7.72 | 1877898① |
1 | Masso A H, Rudd D F. The synthesis of system designs (Ⅱ): Heuristic structuring[J]. AIChE Journal, 1969, 15(1): 10-17. |
2 | Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration (Ⅰ): Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
3 | Yee T F, Grossmann I E. Simultaneous optimization models for heat integration (Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
4 | Pavão L V, Costa C B B, Ravagnani M A S S. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
5 | Pavão L V, Costa C B B, Ravagnani M A S S. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows[J]. Applied Thermal Engineering, 2018, 143: 719-735. |
6 | Zamora J M, Hidalgo-Muñoz M G, Pedroza-Robles L E, et al. Optimization and utilities relocation approach for the improvement of heat exchanger network designs[J]. Chemical Engineering Research and Design, 2020, 156: 209-225. |
7 | Xiao Y, Kayange H A, Cui G M. Heat integration of energy system using an integrated node-wise non-structural model with uniform distribution strategy[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119497. |
8 | 徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616. |
Xu Y, Cui G M. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616. | |
9 | Dolan W B, Cummings P T, LeVan M D. Process optimization via simulated annealing: application to network design[J]. AIChE Journal, 1989, 35(5): 725-736. |
10 | Yerramsetty K M, Murty C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers & Chemical Engineering, 2008, 32(8): 1861-1876. |
11 | Silva A P, Ravagnani M A S S, Biscaia E C. Particle swarm optimisation in heat exchanger network synthesis including detailed equipment design[J]. Computer Aided Chemical Engineering, 2008, 25: 713-718. |
12 | Biyanto T R, Gonawan E K, Nugroho G, et al. Heat exchanger network retrofit throughout overall heat transfer coefficient by using genetic algorithm[J]. Applied Thermal Engineering, 2016, 94: 274-281. |
13 | 肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147. |
Xiao Y, Cui G M, Li S L. A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147. | |
14 | Zhang S, Luo Y Q, Ma Y J, et al. Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm[J]. Energy, 2018, 162: 1139-1157. |
15 | Patel J L, Rana P B, Lalwani D I. Optimization of five stage cantilever beam design and three stage heat exchanger design using amended differential evolution algorithm[J]. Materials Today: Proceedings, 2020, 26: 1977-1981. |
16 | Silva G P, Miranda C B, Carvalho E P, et al. A simultaneous approach for the synthesis of multiperiod heat exchanger network using particle swarm optimization[J]. The Canadian Journal of Chemical Engineering, 2018, 96(5): 1142-1155. |
17 | Pavão L V, Costa C B B, Ravagnani M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2017, 63(5): 1582-1601. |
18 | Aguitoni M C, Pavão L V, Ravagnani M A S S. Heat exchanger network synthesis combining simulated annealing and differential evolution[J]. Energy, 2019, 181: 654-664. |
19 | Thuy N T P, Pendyala R, Rahmanian N, et al. Heat exchanger network optimization by differential evolution method[J]. Applied Mechanics and Materials, 2014, 564: 292-297. |
20 | 王世豪, 田一彤, 李绍军. 基于双层优化策略的柔性换热网络同步优化方法[J]. 高校化学工程学报, 2021, 35(5): 905-914. |
Wang S H, Tian Y T, Li S J. A simultaneous synthesis based on a bi-level optimization strategy for flexible heat exchanger network[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(5): 905-914. | |
21 | 陈帅, 罗娜. 基于抽样平均近似的双层改进粒子群算法的无分流换热网络综合[J]. 高校化学工程学报, 2018, 32(3): 620-627. |
Chen S, Luo N. Sample average approximation based double-layer improved particle swarm optimization for heat exchanger network synthesis without split streams[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 620-627. | |
22 | Rathjens M, Fieg G. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems[J]. Applied Thermal Engineering, 2020, 167: 114771. |
23 | Feyli B, Soltani H, Hajimohammadi R, et al. A reliable approach for heat exchanger networks synthesis with stream splitting by coupling genetic algorithm with modified quasi-linear programming method[J]. Chemical Engineering Science, 2022, 248: 117140. |
24 | 陈子禾, 崔国民, 徐玥, 等. 基于控制参数动态协调策略的换热网络优化研究[J]. 工程热物理学报, 2020, 41(4): 957-965. |
Chen Z H, Cui G M, Xu Y, et al. Study of heat exchanger network optimization based on dynamic coordination strategy of control parameters[J]. Journal of Engineering Thermophysics, 2020, 41(4): 957-965. | |
25 | 孙涛, 崔国民, 陈家星. 一种大步长激励的结构进化策略应用于换热网络优化[J]. 化工学报, 2018, 69(7): 3135-3148. |
Sun T, Cui G M, Chen J X. A structure evolution strategy motivated by large step size for optimization of heat exchanger network[J]. CIESC Journal, 2018, 69(7): 3135-3148. | |
26 | 鲍中凯, 崔国民, 陈家星. 采用结构保护策略的强制进化随机游走算法优化换热网络[J]. 化工学报, 2017, 68(9): 3522-3531. |
Bao Z K, Cui G M, Chen J X. Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy[J]. CIESC Journal, 2017, 68(9): 3522-3531. | |
27 | 韩正恒, 崔国民, 肖媛. 采用结构融合策略优化换热网络[J]. 化工学报, 2019, 70(12): 4730-4740. |
Han Z H, Cui G M, Xiao Y. Optimization of heat exchanger network by structure-fusion strategy[J]. CIESC Journal, 2019, 70(12): 4730-4740. | |
28 | 韩正恒, 崔国民, 赵倩倩, 等. RWCE算法中采用单元重构策略激励换热网络结构优化[J]. 化工学报, 2021, 72(6): 3316-3327. |
Han Z H, Cui G M, Zhao Q Q, et al. Impelling structural optimization of heat exchanger network by unit-reconfiguration strategy in RWCE algorithm[J]. CIESC Journal, 2021, 72(6): 3316-3327. | |
29 | Pavão L V, Costa C B B, Ravagnani M A S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach[J]. Applied Energy, 2017, 203: 304-320. |
30 | Linnhoff B, Ahmad S. Cost optimum exchanger networks (1): Minimum energy and capital using simple methods for capital cost[J]. Computer Chemical Engineering. 1990, 14: 729-750. |
31 | Fieg G, Luo X, Jeżowski J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11/12): 1506-1516. |
32 | 霍兆义, 尹洪超, 赵亮. 有分流换热网络同步综合[J]. 大连理工大学学报, 2013, 53(1): 45-50. |
Huo Z Y, Yin H C, Zhao L. Simultaneous synthesis of heat exchanger network with stream splits[J]. Journal of Dalian University of Technology, 2013, 53(1): 45-50. | |
33 | 鲍中凯, 崔国民, 曹冲, 等. 基于公用工程内置策略的换热网络优化[J]. 计算物理, 2019, 36(6): 707-718. |
Bao Z K, Cui G M, Cao C, et al. Heat exchanger network optimization based on inner utility placement strategy[J]. Chinese Journal of Computational Physics, 2019, 36(6): 707-718. | |
34 | Huo Z Y, Zhao L, Yin H C, et al. Simultaneous synthesis of structural‐constrained heat exchanger networks with and without stream splits[J]. The Canadian Journal of Chemical Engineering, 2013, 91(5): 830-842. |
35 | Bao Z K, Cui G M, Chen J X, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis[J]. Energy, 2018, 152: 694-708. |
36 | Zhang C W, Cui G M, Chen S. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks[J]. Applied Thermal Engineering, 2016, 107: 565-574. |
37 | Nemet A, Isafiade A J, Klemeš J J, et al. Two-step MILP/MINLP approach for the synthesis of large-scale HENs[J]. Chemical Engineering Science, 2019, 197: 432-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||