CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4600-4610.DOI: 10.11949/0438-1157.20230877
• Process system engineering • Previous Articles Next Articles
Bing SONG1(), Tao GUO1, Hongbo SHI1, Shuai TAN1, Yang TAO1, Yuyang MA2
Received:
2023-08-24
Revised:
2023-11-15
Online:
2024-01-22
Published:
2023-11-25
Contact:
Bing SONG
宋冰1(), 郭涛1, 侍洪波1, 谭帅1, 陶阳1, 马浴阳2
通讯作者:
宋冰
作者简介:
宋冰(1990—),男,博士,副教授,songbing@ecust.edu.cn
基金资助:
CLC Number:
Bing SONG, Tao GUO, Hongbo SHI, Shuai TAN, Yang TAO, Yuyang MA. A chemical process quality-related fault detection method based on twin-space parallel regression[J]. CIESC Journal, 2023, 74(11): 4600-4610.
宋冰, 郭涛, 侍洪波, 谭帅, 陶阳, 马浴阳. 基于双子空间并行回归的化工过程质量相关故障检测方法[J]. 化工学报, 2023, 74(11): 4600-4610.
Add to citation manager EndNote|Ris|BibTeX
CCA,T2 | NPER,T2 | TSPR, |
---|---|---|
2.08% | 3.02% | 0.63% |
Table 1 Fault alarm rate in quality-related space
CCA,T2 | NPER,T2 | TSPR, |
---|---|---|
2.08% | 3.02% | 0.63% |
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
100% | 100% | 100% | 100% |
Table 2 Fault detection rate of fault 14 by PLS,CCA,NPER and TSPR method
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
100% | 100% | 100% | 100% |
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
96.75% | 91.63% | 95.38% | 97.25% |
Table 3 Fault detection rate in quality-related space
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
96.75% | 91.63% | 95.38% | 97.25% |
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
98.63% | 98.25% | 98.25% | 98.25% |
Table 4 Fault detection rate of fault 2 by PLS,CCA,NPER and TSPR method
PLS,T2 | CCA,T2 | NPER,T2 | TSPR, |
---|---|---|---|
98.63% | 98.25% | 98.25% | 98.25% |
1 | 彭开香, 张传放, 马亮, 等. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598. |
Peng K X, Zhang C F, Ma L, et al. System-levels-based holographic fault diagnosis for complex industrial processes[J]. CIESC Journal, 2019, 70(2): 590-598. | |
2 | Zhu J L, Ge Z Q, Song Z H, et al. Large-scale plant-wide process modeling and hierarchical monitoring: a distributed Bayesian network approach[J]. Journal of Process Control, 2018, 65: 91-106. |
3 | 赵春晖, 余万科, 高福荣. 非平稳间歇过程数据解析与状态监控: 回顾与展望[J]. 自动化学报, 2020, 46(10): 2072-2091. |
Zhao C H, Yu W K, Gao F R. Data analytics and condition monitoring methods for nonstationary batch processes: current status and future[J]. Acta Automatica Sinica, 2020, 46(10): 2072-2091. | |
4 | Peng K X, Li Q Q, Zhang K, et al. Quality-related process monitoring for dynamic non-Gaussian batch process with multi-phase using a new data-driven method[J]. Neurocomputing, 2016, 214: 317-328. |
5 | Dong J, Jiang L Z, Zhang C, et al. A novel quality-related incipient fault detection method based on canonical variate analysis and kullback-leibler divergence for large-scale industrial processes[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-10. |
6 | 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术[J]. 自动化学报, 2018, 44(7): 1153-1164. |
Zhou D H, Ji H Q, He X. Fault diagnosis techniques for the information control system of high-speed trains[J]. Acta Automatica Sinica, 2018, 44(7): 1153-1164. | |
7 | 高学金, 何紫鹤, 高慧慧, 等. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测[J]. 化工学报, 2022, 73(3): 1300-1314. |
Gao X J, He Z H, Gao H H, et al. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix[J]. CIESC Journal, 2022, 73(3): 1300-1314. | |
8 | 张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1): 60-80. |
Zhang S M, Wang F L, Tan S, et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42(1): 60-80. | |
9 | Ge Z Q, Song Z H. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957. |
10 | Peng K X, Zhang K, Li G. Quality-related process monitoring based on total kernel PLS model and its industrial application[J]. Mathematical Problems in Engineering, 2013, 2013: 1-14. |
11 | Zheng Y, Liu Z W, Yang W D, et al. Parallel projection to latent structures for quality-relevant process monitoring[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 76-84. |
12 | Song B, Shi H B, Tan S, et al. Multisubspace orthogonal canonical correlation analysis for quality-related plant-wide process monitoring[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6368-6378. |
13 | Chen Z W, Ding S X, Zhang K, et al. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process[J]. Control Engineering Practice, 2016, 46: 51-58. |
14 | 马玉鑫. 流程工业过程故障检测的特征提取方法研究[D]. 上海: 华东理工大学, 2015. |
Ma Y X. Research on feature extraction method of process fault detection in process industry[D]. Shanghai: East China University of Science and Technology, 2015. | |
15 | He X F, Niyogi P. Locality preserving projections[J]. Advances in Neural Information Processing Systems, 2003, 16(16): 153-160. |
16 | Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. |
17 | Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. New York: ACM, 2001: 585-591. |
18 | He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Piscataway, NJ: IEEE, 2005: 1208-1213. |
19 | Miao A M, Ge Z Q, Song Z H, et al. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142: 184-196. |
20 | Song B, Ma Y X, Shi H B. Multimode process monitoring using improved dynamic neighborhood preserving embedding[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135: 17-30. |
21 | 张妮. 基于流形特征提取的化工过程故障诊断方法研究[D]. 东营: 中国石油大学(华东), 2013. |
Zhang N. Research on fault diagnosis method of chemical process based on manifold feature extraction[D]. Dongying: China University of Petroleum, 2013. | |
22 | 苗爱敏, 葛志强, 宋执环, 等. 基于时序扩展的邻域保持嵌入算法及其在故障检测中的应用[J]. 华东理工大学学报(自然科学版), 2014, 40(2): 218-224. |
Miao A M, Ge Z Q, Song Z H, et al. Neighborhood preserving embedding based on temporal extension and its application in fault detection[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(2): 218-224. | |
23 | 王琨, 侍洪波, 谭帅, 等. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
Wang K, Shi H B, Tan S, et al. Application of local time difference constraint neighborhood preserving embedding algorithm in fault detection[J]. CIESC Journal, 2022, 73(7): 3109-3119. | |
24 | Song B, Song Y M, Jin Y T, et al. Plant-wide process fine-scale monitoring via distributed static magnitude-dynamic difference[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10864-10872. |
25 | Song B, Shi H B, Tan S, et al. Serial correlated-uncorrelated concurrent space method for process monitoring[J]. Journal of Process Control, 2021, 105: 292-301. |
26 | 郑嘉乐. 复杂工业过程动态表征学习和动静协同的变工况识别方法[D]. 杭州: 浙江大学, 2022. |
Zheng J L. Dynamic representation learning and dynamic-static collaborative variable working condition identification method for complex industrial processes[D]. Hangzhou: Zhejiang University, 2022. | |
27 | Zhang H Y, Li C D, Wei Q L, et al. Fault detection and diagnosis of the air handling unit via combining the feature sparse representation based dynamic SFA and the LSTM network[J]. Energy and Buildings, 2022, 269: 112241. |
28 | Guo F H, Shang C, Huang B, et al. Monitoring of operating point and process dynamics via probabilistic slow feature analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 115-125. |
29 | Zhang H Y, Tian X M, Deng X G, et al. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis[J]. ISA Transactions, 2018, 79: 108-126. |
30 | Zhang S M, Zhao C H, Huang B. Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5320-5329. |
31 | 周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165. | |
32 | Zhu Q Q, Liu Q, Qin S J. Concurrent quality and process monitoring with canonical correlation analysis[J]. Journal of Process Control, 2017, 60: 95-103. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[4] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[5] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[6] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[7] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[8] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[9] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[10] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[11] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[12] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
[13] | XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections [J]. CIESC Journal, 2020, 71(12): 5655-5663. |
[14] | Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems [J]. CIESC Journal, 2020, 71(11): 5237-5245. |
[15] | Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA [J]. CIESC Journal, 2019, 70(9): 3441-3448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||