CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 463-474.DOI: 10.11949/0438-1157.20230960
• Thermodynamics • Previous Articles Next Articles
Tong YANG1(), Huan WANG1,2, Chun DENG1()
Received:
2023-09-14
Revised:
2024-01-09
Online:
2024-04-10
Published:
2024-02-25
Contact:
Chun DENG
通讯作者:
邓春
作者简介:
杨同(1998—),男,博士研究生,1719408185@qq.com
基金资助:
CLC Number:
Tong YANG, Huan WANG, Chun DENG. Prediction of vapor-liquid equilibrium data of uranium hexafluoride and fluoride and simulation of distillation process[J]. CIESC Journal, 2024, 75(2): 463-474.
杨同, 王欢, 邓春. 六氟化铀及氟化物汽液相平衡数据预测及精馏过程模拟[J]. 化工学报, 2024, 75(2): 463-474.
Add to citation manager EndNote|Ris|BibTeX
温度/℃ | x1(UF6) | x2(TiF4) | y1(UF6) | y2(TiF4) |
---|---|---|---|---|
56.8 | 0.99 | 0.01 | 0.9999 | 0.0001 |
57.2 | 0.98 | 0.02 | 0.9999 | 0.0001 |
58.1 | 0.95 | 0.05 | 0.9998 | 0.0002 |
59.9 | 0.9 | 0.10 | 0.9997 | 0.0003 |
61.7 | 0.85 | 0.15 | 0.9996 | 0.0004 |
63.5 | 0.8 | 0.20 | 0.9994 | 0.0006 |
65.3 | 0.75 | 0.25 | 0.9992 | 0.0008 |
67.3 | 0.7 | 0.30 | 0.9991 | 0.0009 |
69.4 | 0.65 | 0.35 | 0.9989 | 0.0011 |
71.6 | 0.6 | 0.40 | 0.9986 | 0.0014 |
74.0 | 0.55 | 0.45 | 0.9983 | 0.0017 |
76.7 | 0.5 | 0.50 | 0.9979 | 0.0021 |
79.8 | 0.45 | 0.55 | 0.9975 | 0.0025 |
83.3 | 0.4 | 0.60 | 0.9968 | 0.0032 |
87.4 | 0.35 | 0.65 | 0.9960 | 0.0040 |
92.4 | 0.3 | 0.70 | 0.9948 | 0.0052 |
98.8 | 0.25 | 0.75 | 0.9929 | 0.0071 |
107.2 | 0.2 | 0.80 | 0.9896 | 0.0104 |
119.2 | 0.15 | 0.85 | 0.9831 | 0.0169 |
138.4 | 0.1 | 0.90 | 0.9662 | 0.0338 |
176.0 | 0.05 | 0.95 | 0.8951 | 0.1049 |
225.1 | 0.02 | 0.98 | 0.6625 | 0.3375 |
251.3 | 0.01 | 0.99 | 0.4328 | 0.5672 |
280.5 | 0.001 | 0.999 | 0.0560 | 0.9440 |
Table 1 Prediction data of vapor-liquid phase equilibria for TiF4-UF6 binary systems at 101.3 kPa
温度/℃ | x1(UF6) | x2(TiF4) | y1(UF6) | y2(TiF4) |
---|---|---|---|---|
56.8 | 0.99 | 0.01 | 0.9999 | 0.0001 |
57.2 | 0.98 | 0.02 | 0.9999 | 0.0001 |
58.1 | 0.95 | 0.05 | 0.9998 | 0.0002 |
59.9 | 0.9 | 0.10 | 0.9997 | 0.0003 |
61.7 | 0.85 | 0.15 | 0.9996 | 0.0004 |
63.5 | 0.8 | 0.20 | 0.9994 | 0.0006 |
65.3 | 0.75 | 0.25 | 0.9992 | 0.0008 |
67.3 | 0.7 | 0.30 | 0.9991 | 0.0009 |
69.4 | 0.65 | 0.35 | 0.9989 | 0.0011 |
71.6 | 0.6 | 0.40 | 0.9986 | 0.0014 |
74.0 | 0.55 | 0.45 | 0.9983 | 0.0017 |
76.7 | 0.5 | 0.50 | 0.9979 | 0.0021 |
79.8 | 0.45 | 0.55 | 0.9975 | 0.0025 |
83.3 | 0.4 | 0.60 | 0.9968 | 0.0032 |
87.4 | 0.35 | 0.65 | 0.9960 | 0.0040 |
92.4 | 0.3 | 0.70 | 0.9948 | 0.0052 |
98.8 | 0.25 | 0.75 | 0.9929 | 0.0071 |
107.2 | 0.2 | 0.80 | 0.9896 | 0.0104 |
119.2 | 0.15 | 0.85 | 0.9831 | 0.0169 |
138.4 | 0.1 | 0.90 | 0.9662 | 0.0338 |
176.0 | 0.05 | 0.95 | 0.8951 | 0.1049 |
225.1 | 0.02 | 0.98 | 0.6625 | 0.3375 |
251.3 | 0.01 | 0.99 | 0.4328 | 0.5672 |
280.5 | 0.001 | 0.999 | 0.0560 | 0.9440 |
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
25℃时的溶解度参数 | DELTA | 1.8363×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
Table 2 Estimated value of UF6 physical parameters
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
25℃时的溶解度参数 | DELTA | 1.8363×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
在0.9临界温度下的压力 | AT 0.9TC | 1.9667×106 | N/m2 | RIEDEL |
临界压力 | PC | 4.6000×106 | N/m2 | RIEDEL |
25℃时的溶解度参数 | DELTA | 1.7802×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
Table 3 Estimated value of VF5 physical parameters
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
在0.9临界温度下的压力 | AT 0.9TC | 1.9667×106 | N/m2 | RIEDEL |
临界压力 | PC | 4.6000×106 | N/m2 | RIEDEL |
25℃时的溶解度参数 | DELTA | 1.7802×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
Table 4 Estimated value of MoF6 physical parameters
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
Table 5 Estimated value of WF5 physical parameters
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
在0.9临界温度下的压力 | AT 0.9TC | 1.9506×106 | N/m2 | RIEDEL |
临界压力 | PC | 4.8500×106 | N/m2 | RIEDEL |
25℃时的溶解度参数 | DELTA | 2.6367×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
Table 6 Estimated value of TiF4 physical parameters
物性名称 | 参数 | 估算值 | 单位 | 方法 |
---|---|---|---|---|
在0.9临界温度下的压力 | AT 0.9TC | 1.9506×106 | N/m2 | RIEDEL |
临界压力 | PC | 4.8500×106 | N/m2 | RIEDEL |
25℃时的溶解度参数 | DELTA | 2.6367×104 | J/m3 | DEFINITI |
无限稀释水溶液Gibbs生成能 | DGAQHG | 1.1604×104 | J/kmol | AQU-EST1 |
25℃时的熵 | S25HG | -38.9208 | J/(kmol·K) | AQU-EST2 |
Helgeson OMEGA热容系数 | OMEGHG | 1.4241×108 | J/kmol | HELGESON |
温度/℃ | 模拟值/kPa | 文献值[ | 相对误差/% |
---|---|---|---|
95 | 368.741 | 366.438 | 0.63 |
90 | 323.509 | 321.662 | 0.57 |
80 | 245.701 | 243.976 | 0.71 |
70 | 183.058 | 179.887 | 1.76 |
65 | 156.786 | 154.785 | 1.29 |
64 | 151.903 | 151.705 | 0.13 |
50 | 95.205 | 73.496 | 29.54 |
Table 7 Comparison of literature and simulated values of UF6 saturated vapor pressure
温度/℃ | 模拟值/kPa | 文献值[ | 相对误差/% |
---|---|---|---|
95 | 368.741 | 366.438 | 0.63 |
90 | 323.509 | 321.662 | 0.57 |
80 | 245.701 | 243.976 | 0.71 |
70 | 183.058 | 179.887 | 1.76 |
65 | 156.786 | 154.785 | 1.29 |
64 | 151.903 | 151.705 | 0.13 |
50 | 95.205 | 73.496 | 29.54 |
组分i | 组分j | aij | aji | bij | bji | cij |
---|---|---|---|---|---|---|
UF6 | MOF6 | -5.9291 | 0.7051 | 2370.64 | -409.619 | 0.5 |
UF6 | WF6 | -10.0950 | 3.5716 | 4571.31 | -2021.420 | 0.1 |
TIF4 | UF6 | -3.0002 | 290.2769 | 1111.73 | 1081.995 | 0.3 |
VF5 | UF6 | 2.4873 | -8.2664 | -1085.03 | 3499.361 | 0.3 |
Table 8 Binary interaction parameters obtained from the NRTL model
组分i | 组分j | aij | aji | bij | bji | cij |
---|---|---|---|---|---|---|
UF6 | MOF6 | -5.9291 | 0.7051 | 2370.64 | -409.619 | 0.5 |
UF6 | WF6 | -10.0950 | 3.5716 | 4571.31 | -2021.420 | 0.1 |
TIF4 | UF6 | -3.0002 | 290.2769 | 1111.73 | 1081.995 | 0.3 |
VF5 | UF6 | 2.4873 | -8.2664 | -1085.03 | 3499.361 | 0.3 |
进料物流 | 进料流量/ (kg/h) | 模拟进料 质量分数 | 文献中产品 质量分数 |
---|---|---|---|
UF6 | 369.22309 | 0.99871 | — |
VF5 | 0.01109 | 0.00003 | <3×10-7 |
MoF6 | 0.29576 | 0.00080 | 约1×10-7 |
WF6 | 0.02218 | 0.00006 | 约8×10-8 |
TiF4 | 0.14788 | 0.00040 | <1×10-5 |
Table 9 Data of feed stream
进料物流 | 进料流量/ (kg/h) | 模拟进料 质量分数 | 文献中产品 质量分数 |
---|---|---|---|
UF6 | 369.22309 | 0.99871 | — |
VF5 | 0.01109 | 0.00003 | <3×10-7 |
MoF6 | 0.29576 | 0.00080 | 约1×10-7 |
WF6 | 0.02218 | 0.00006 | 约8×10-8 |
TiF4 | 0.14788 | 0.00040 | <1×10-5 |
参数 | 单位 | 方案一 | 方案二 | |||
---|---|---|---|---|---|---|
精馏塔T1-1 | 精馏塔T1-2 | 精馏塔T2-1 | 精馏塔T2-2 | |||
塔板数 | 37 | 9 | 6 | 45 | ||
进料位置 | 15 | 4 | 4 | 13 | ||
回流比 | 5 | 0.02 | 0.10 | 0.50 | ||
进料温度 | ℃ | 70 | 70 | 70 | 70 | |
冷凝器温度 | ℃ | 80.82 | 83.20 | 99.14 | 71.12 | |
冷凝器压力 | kPa | 369 | 269 | 410 | 286 | |
再沸器温度 | ℃ | 98.09 | 210.05 | 229.30 | 85.44 | |
再沸器压力 | kPa | 398 | 276 | 414 | 319 |
Table 10 Operation parameters of the distillation column in Scheme 1 and Scheme 2
参数 | 单位 | 方案一 | 方案二 | |||
---|---|---|---|---|---|---|
精馏塔T1-1 | 精馏塔T1-2 | 精馏塔T2-1 | 精馏塔T2-2 | |||
塔板数 | 37 | 9 | 6 | 45 | ||
进料位置 | 15 | 4 | 4 | 13 | ||
回流比 | 5 | 0.02 | 0.10 | 0.50 | ||
进料温度 | ℃ | 70 | 70 | 70 | 70 | |
冷凝器温度 | ℃ | 80.82 | 83.20 | 99.14 | 71.12 | |
冷凝器压力 | kPa | 369 | 269 | 410 | 286 | |
再沸器温度 | ℃ | 98.09 | 210.05 | 229.30 | 85.44 | |
再沸器压力 | kPa | 398 | 276 | 414 | 319 |
参数 | 单位 | 进料物流 | T1-1塔顶 | T1-1塔底 | T1-2塔顶 | T1-2塔底 | |
---|---|---|---|---|---|---|---|
温度 | ℃ | 70 | 80.82 | 98.09 | 83.20 | 210.05 | |
压力 | kPa | 410 | 369 | 398 | 269 | 276 | |
质量流量 | UF6 | kg/h | 369.2231 | 0.3692 | 368.8539 | 368.8170 | 0.0368 |
VF5 | kg/h | 0.0111 | 0.0111 | 1.03×10-11 | 1.03×10-11 | 0 | |
MOF6 | kg/h | 0.2958 | 0.2957 | 3.69×10-5 | 3.69×10-5 | 3.64×10-11 | |
WF6 | kg/h | 0.0222 | 0.0222 | 7.27×10-12 | 7.27×10-12 | 0 | |
TIF4 | kg/h | 0.1479 | 0 | 0.1479 | 1.20×10-12 | 0.1478 | |
质量分数 | UF6 | 0.9987 | 0.5288 | 0.9995991 | 0.9999998 | 0.1995 | |
VF5 | 3.00×10-5 | 0.0159 | 2.80×10-14 | 2.80×10-14 | 0 | ||
MOF6 | 0.0008 | 0.4235 | 1.00×10-7 | 1.00×10-7 | 2.09×10-10 | ||
WF6 | 6.00×10-5 | 0.0318 | 1.97×10-14 | 1.97×10-14 | 0 | ||
TIF4 | 0.0004 | 0 | 0.0004 | 3.26×10-15 | 0.8005 |
Table 11 Stream data for the distillation purification of UF6(Scheme 1)
参数 | 单位 | 进料物流 | T1-1塔顶 | T1-1塔底 | T1-2塔顶 | T1-2塔底 | |
---|---|---|---|---|---|---|---|
温度 | ℃ | 70 | 80.82 | 98.09 | 83.20 | 210.05 | |
压力 | kPa | 410 | 369 | 398 | 269 | 276 | |
质量流量 | UF6 | kg/h | 369.2231 | 0.3692 | 368.8539 | 368.8170 | 0.0368 |
VF5 | kg/h | 0.0111 | 0.0111 | 1.03×10-11 | 1.03×10-11 | 0 | |
MOF6 | kg/h | 0.2958 | 0.2957 | 3.69×10-5 | 3.69×10-5 | 3.64×10-11 | |
WF6 | kg/h | 0.0222 | 0.0222 | 7.27×10-12 | 7.27×10-12 | 0 | |
TIF4 | kg/h | 0.1479 | 0 | 0.1479 | 1.20×10-12 | 0.1478 | |
质量分数 | UF6 | 0.9987 | 0.5288 | 0.9995991 | 0.9999998 | 0.1995 | |
VF5 | 3.00×10-5 | 0.0159 | 2.80×10-14 | 2.80×10-14 | 0 | ||
MOF6 | 0.0008 | 0.4235 | 1.00×10-7 | 1.00×10-7 | 2.09×10-10 | ||
WF6 | 6.00×10-5 | 0.0318 | 1.97×10-14 | 1.97×10-14 | 0 | ||
TIF4 | 0.0004 | 0 | 0.0004 | 3.26×10-15 | 0.8005 |
参数 | 单位 | 进料物流 | T2-1塔顶 | T2-1塔底 | T2-2塔顶 | T2-2塔底 | |
---|---|---|---|---|---|---|---|
温度 | ℃ | 70 | 99.14 | 229.31 | 71.12 | 85.44 | |
压力 | kPa | 410 | 410 | 414 | 286 | 319 | |
质量流量 | UF6 | kg/h | 369.2231 | 369.1862 | 0.0369 | 0.3692 | 368.8170 |
VF5 | kg/h | 0.0111 | 0.0111 | 1.63×10-7 | 0.0111 | 7.14×10-13 | |
MOF6 | kg/h | 0.2958 | 0.2957 | 1.04×10-5 | 0.2957 | 3.69×10-5 | |
WF6 | kg/h | 0.0222 | 0.0222 | 1.88×10-7 | 0.0222 | 1.43×10-13 | |
TIF4 | kg/h | 0.1479 | 8.44×10-10 | 0.1479 | 0 | 8.44×10-10 | |
质量分数 | UF6 | 0.9987 | 0.9991 | 0.1996 | 0.5288 | 0.9999999 | |
VF5 | 3.00×10-5 | 3.00×10-5 | 8.83×10-7 | 0.0159 | 1.94×10-15 | ||
MOF6 | 0.0008 | 0.0008 | 5.61×10-5 | 0.4236 | 1.00×10-7 | ||
WF6 | 6.00×10-5 | 6.00×10-5 | 1.02×10-6 | 0.0318 | 3.89×10-16 | ||
TIF4 | 0.0004 | 2.28×10-12 | 0.8003 | 0 | 2.29×10-12 |
Table 12 Stream data for the distillation purification of UF6(Scheme 2)
参数 | 单位 | 进料物流 | T2-1塔顶 | T2-1塔底 | T2-2塔顶 | T2-2塔底 | |
---|---|---|---|---|---|---|---|
温度 | ℃ | 70 | 99.14 | 229.31 | 71.12 | 85.44 | |
压力 | kPa | 410 | 410 | 414 | 286 | 319 | |
质量流量 | UF6 | kg/h | 369.2231 | 369.1862 | 0.0369 | 0.3692 | 368.8170 |
VF5 | kg/h | 0.0111 | 0.0111 | 1.63×10-7 | 0.0111 | 7.14×10-13 | |
MOF6 | kg/h | 0.2958 | 0.2957 | 1.04×10-5 | 0.2957 | 3.69×10-5 | |
WF6 | kg/h | 0.0222 | 0.0222 | 1.88×10-7 | 0.0222 | 1.43×10-13 | |
TIF4 | kg/h | 0.1479 | 8.44×10-10 | 0.1479 | 0 | 8.44×10-10 | |
质量分数 | UF6 | 0.9987 | 0.9991 | 0.1996 | 0.5288 | 0.9999999 | |
VF5 | 3.00×10-5 | 3.00×10-5 | 8.83×10-7 | 0.0159 | 1.94×10-15 | ||
MOF6 | 0.0008 | 0.0008 | 5.61×10-5 | 0.4236 | 1.00×10-7 | ||
WF6 | 6.00×10-5 | 6.00×10-5 | 1.02×10-6 | 0.0318 | 3.89×10-16 | ||
TIF4 | 0.0004 | 2.28×10-12 | 0.8003 | 0 | 2.29×10-12 |
序列 | TAC/(106 CNY/a) | ||
---|---|---|---|
直接分离序列 | T1-1 | 4.74 | 18.35 |
T1-2 | 13.61 | ||
间接分离序列 | T2-1 | 7.46 | 13.58 |
T2-2 | 6.12 |
Table 13 Summary of TAC calculation results for direct separation sequence and indirect separation sequence
序列 | TAC/(106 CNY/a) | ||
---|---|---|---|
直接分离序列 | T1-1 | 4.74 | 18.35 |
T1-2 | 13.61 | ||
间接分离序列 | T2-1 | 7.46 | 13.58 |
T2-2 | 6.12 |
1 | 刘燕华, 李宇航, 王文涛. 中国实现“双碳”目标的挑战、机遇与行动[J]. 中国人口·资源与环境, 2021, 31(9): 1-5. |
Liu Y H, Li Y H, Wang W T. Challenges, opportunities and actions for China to achieve the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 1-5. | |
2 | 吴放. 我国碳达峰、碳中和进程中核能的地位和作用[J]. 核科学与工程, 2022, 42(4): 737-743. |
Wu F. The role of nuclear in China's carbon peaking and carbon neutrality course[J]. Nuclear Science and Engineering, 2022, 42(4): 737-743. | |
3 | 黄伦光, 庄海兴, 左建伟, 等. 国内外铀纯化工艺状况[J]. 铀矿冶, 1998, 17(1): 31-42. |
Huang L G, Zhuang H X, Zuo J W, et al. The status of international purification process of uranium[J]. Uranium Mining and Metallurgy, 1998, 17(1): 31-42. | |
4 | 邓佐卿, 庄海兴, 黄伦光. 我国天然铀纯化技术研究的发展与现状[J]. 铀矿冶, 1998, 17(4): 231-238. |
Deng Z Q, Zhuang H X, Huang L G. Development and present situation of natural uranium purification technical research in China[J]. Uranium Mining and Metallurgy, 1998, 17(4): 231-238. | |
5 | 刘璞, 邹琛华, 许云生, 等. U3O8氢还原制备UO2技术研究[J]. 中国核电, 2018, 11(3): 395-399. |
Liu P, Zou C H, Xu Y S, et al. Study on the technology of UO2 production through U3O8 hydrogen reduction[J]. China Nuclear Power, 2018, 11(3): 395-399. | |
6 | 杨松涛, 李东洋, 牛玉清, 等. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
Yang S T, Li D Y, Niu Y Q, et al. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides[J]. CIESC Journal, 2022, 73(9): 3828-3840. | |
7 | Mears W, Townend R, Broadley R, et al. Removal of some volatile impurities from uranium hexafluoride[J]. Industrial & Engineering Chemistry, 1958, 50(12): 1771-1773. |
8 | Shubin A N, Michurov V D, Mustafaev V K, et al. Separation of enriched uranium hexafluoride on a protoype commercial rectification facility[J]. Atomic Energy, 2007, 103(3): 706-709. |
9 | Carles M, Fra J. Method of purification of uranium hexafluoride: US3806579[P]. 1974-04-23. |
10 | 高兴星, 张慧中, 蒙金红. 全回流系统中六氟化铀精馏纯化技术研究[C]//中国核学会铀转化专委会2003年学术交流会论文集. 北京: 中国核学会, 2003: 44-50. |
Gao X X, Zhang H Z, Meng J H. Study on purification technology of uranium hexafluoride by distillation in total reflux system[C]//Proceedings of the 2003 Academic Exchange Meeting of the Uranium Conversion Committee of the Chinese Nuclear Society. Beijing: Chinese Nuclear Society, 2003: 44-50. | |
11 | Reynes J, Carles M, Aubert J. Étude expérimentale de l'équilibre liquide-vapeur du mélange binaire trifluorure de chlore-hexafluorure de tungstène sous une pression de 2600 torr[J]. Journal De Chimie Physique, 1970, 67: 1534-1537. |
12 | Reynes J, Carles M, Aubert J. Étude expérimentale de l'équilibre liquide-vapeur du mélange binaire hexafluorure d'uranium-hexafluorure de tungstène sous une pression de 2600 torr[J]. Journal De Chimie Physique, 1970, 67: 1530-1533. |
13 | Shrewsberry R C, Musulin B. Raoult's law study of vanadium pentafluoride in uranium hexafluoride[J]. Science, 1964, 145(3639): 1452-1454. |
14 | Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry, 1995, 99(7): 2224-2235. |
15 | Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J Chem Soc, Perkin Trans 2, 1993(5): 799-805. |
16 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选:实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
Gao T F, Li G X, Lei Z G. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
17 | Járvás G, Kontos J, Babics G, et al. A novel method for the surface tension estimation of ionic liquids based on COSMO-RS theory[J]. Fluid Phase Equilibria, 2018, 468: 9-17. |
18 | 霍猛, 彭晓婉, 赵金, 等. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313. |
Huo M, Peng X W, Zhao J, et al. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids[J]. CIESC Journal, 2022, 73(12): 5305-5313. | |
19 | Tedder D W, Rudd D F. Parametric studies in industrial distillation(part Ⅰ): Design comparisons[J]. AIChE Journal, 1978, 24(2): 303-315. |
20 | 桂成敏, 朱瑞松, 张傑, 等. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105. |
Gui C M, Zhu R S, Zhang J, et al. Progress on ionic liquids for gas drying[J]. CIESC Journal, 2020, 71(1): 92-105. | |
21 | Noh J, Fulgueras A M, Sebastian L J, et al. Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 1-8. |
22 | Ghanadzadeh H, Ghanadzadeh A, Bahrpaima K. Measurement and prediction of tie-line data for mixtures of (water+1-propanol + diisopropyl ether): LLE diagrams as a function of temperature[J]. Fluid Phase Equilibria, 2009, 277(2): 126-130. |
23 | Diky V, Chirico R D, Muzny C D, et al. Thermodata engine (TDE): software implementation of the dynamic data evaluation concept(8): Properties of material streams and solvent design[J]. Journal of Chemical Information and Modeling, 2013, 53(1): 249-266. |
24 | Diky V, Chirico R D, Muzny C D, et al. Thermodata engine (TDE) software implementation of the dynamic data evaluation concept(7): Ternary mixtures[J]. Journal of Chemical Information and Modeling, 2012, 52(1): 260-276. |
25 | Vikram S, Rosha P, Kumar S, et al. Thermodynamic analysis and parametric optimization of steam-CO2 based biomass gasification system using Aspen PLUS[J]. Energy, 2022, 241: 122854. |
26 | 谢安俊, 刘世华, 张华岩, 等. 大型化工流程模拟软件—ASPEN PIUS[J]. 石油与天然气化工, 1995, 24(4): 247-251, 217-218. |
Xie A J, Liu S H, Zhang H Y, et al. ASPEN PLUS, a large-scale chemical process simulation software[J]. Chemical Engineering of Oil & Gas, 1995, 24(4): 247-251, 217-218. | |
27 | 姜海英, 武国章, 程若玉. UF6-MoF6二元体系相对挥发度的测定[J]. 化学世界, 2021, 62(5): 316-320. |
Jiang H Y, Wu G Z, Cheng R Y. Determination of relative volatility of binary system between UF6 and MoF6 [J]. Chemical World, 2021, 62(5): 316-320. | |
28 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
29 | 李进龙, 李佳书, 杨青, 等. 乙腈+水+离子液体等压汽液平衡测定与计算[J]. 化工学报, 2019, 70(6): 2110-2116. |
Li J L, Li J S, Yang Q, et al. Determination and calculation of isobaric vapor equilibrium for acetonitrile+water+ionic liquid[J]. CIESC Journal, 2019, 70(6): 2110-2116. | |
30 | Ezhov V K. Commercial rectification facility for deep purification of sublimate uranium hexafluoride[J]. Atomic Energy, 2007, 103(5): 890-894. |
31 | Nadgir V M, Liu Y A. Studies in chemical process design and synthesis(part Ⅴ): A simple heuristic method for systematic synthesis of initial sequences for multicomponent separations[J]. AIChE Journal, 1983, 29(6): 926-934. |
[1] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[2] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[3] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[4] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[5] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[6] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[7] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[8] | Wuxiang LI, Yuyu SUN, Danyang LIU, Xinlei CAI, Jihai TANG, Yiping HUANG, Guowen ZHANG, Zhuxiu ZHANG, Xu QIAO. Optimal design and control of reactive distillation process with component recycle for the synthesis of n-propyl propionate [J]. CIESC Journal, 2023, 74(12): 4945-4955. |
[9] | Tingyu WU, Chao WANG, Yutao QIN, Yu ZHUANG, Jian DU. Study of extractive distillation processes with preconcentration for separating ethyl acetate/ethanol/water azeotropic mixture [J]. CIESC Journal, 2023, 74(11): 4578-4586. |
[10] | Qingmei DANG, Qiang LI, Huidian DING, Shengkun JIA, Xing QIAN, Yang YUAN, Kejin HUANG, Haisheng CHEN. Reconstruction and prediction of distillation or absorption state variables under off-design conditions based on dynamic mode decomposition [J]. CIESC Journal, 2023, 74(10): 4229-4240. |
[11] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[12] | Huiying LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Influence of vapor feed on optimal design of dividing wall column [J]. CIESC Journal, 2022, 73(7): 3090-3098. |
[13] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
[14] | Xingwei LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of distillation column based on trust region algorithm [J]. CIESC Journal, 2022, 73(5): 2031-2038. |
[15] | Wenting DUAN, Siyue REN, Xiao FENG, Yufei WANG. Distillation column pressure optimization integrated with the heat exchanger network [J]. CIESC Journal, 2022, 73(5): 2052-2059. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||