CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 47-59.DOI: 10.11949/0438-1157.20230649
• Reviews and monographs • Previous Articles Next Articles
Yuting ZHENG(), Guandong FANG, Mengbo ZHANG, Haomiao ZHANG(), Jingdai WANG, Yongrong YANG
Received:
2023-06-30
Revised:
2023-08-20
Online:
2024-03-11
Published:
2024-01-25
Contact:
Haomiao ZHANG
郑雨婷(), 方冠东, 张梦波, 张浩淼(), 王靖岱, 阳永荣
通讯作者:
张浩淼
作者简介:
郑雨婷(1999—),女,硕士研究生,yuting_zheng@zju.edu.cn
基金资助:
CLC Number:
Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology[J]. CIESC Journal, 2024, 75(1): 47-59.
郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic diagram of the micro-channel distillation unit[41]1—syringe pump; 2—nitrogen gas cylinder; 3—hot water bath; 4—PID controller; 5—micro-distillation module; 6—distillate product; 7—temperature controller & indicator; 8—bottoms product; 9—thermocouples; 10—surface heaters; 11—NRV; 12—pressure transducer & indicator; 13—chiller line I/O; 14—mass flow controller
精馏方法 | 总硫含量/(mg/kg) | 重硫含量/ (mg/kg) |
---|---|---|
微通道精馏 | 328.7±3 | 16.6±0.5 |
间歇精馏 | 331.9±3 | 17.3±0.5 |
Table 1 Sulfur content of fractions obtained by different distillation methods[49]
精馏方法 | 总硫含量/(mg/kg) | 重硫含量/ (mg/kg) |
---|---|---|
微通道精馏 | 328.7±3 | 16.6±0.5 |
间歇精馏 | 331.9±3 | 17.3±0.5 |
微精馏类型 | 微通道尺度 | 分离效率 | 分离体系 | 文献 |
---|---|---|---|---|
毛细管力 | Φ10.5 mm | 5~7 cm HETP | 甲醇/水 乙醇/水 | [ |
140 μm×10 μm | — | JP-8燃料脱硫 | [ | |
30 μm×5 mm | 5 cm HETP | 甲酸甲酯/甲醇 | [ | |
350 μm×300 μm | 4 TP | 甲醇/甲苯 | [ | |
350 μm×300 μm | 2.7 TP | 苯甲醛/甲苯 | [ | |
100 μm×10 μm | — | 乙醇/水 | [ | |
Φ30 mm | — | 乙酸乙酯/乙醇 | [ | |
500 μm×1000 μm | 1.56 cm HETP | 10B/11B | [ | |
重力 | 35 μm×5 mm | 1.08 cm HETP | 甲苯/正辛烷 | [ |
Φ25/50 mm | 2.7 cm HETP | 氨气、硅烷纯化 | [ | |
Φ7 mm | 8.8 cm HETP | 正己烷/环己烷 | [ | |
Φ50 mm | 5~8 cm HETP | 甲醇/乙醇 正庚烷/甲基环己烷 | [ | |
扫气膜 | Φ677 μm | 分离系数≈5 | 甲醇/水 | [ |
真空膜 | 1000 μm×72 μm | 1.8 TP | 甲醇/水 | [ |
载气膜 | 400 μm×400 μm | — | 甲醇/甲苯 二氯甲烷/甲苯 | [ |
离心力 | 250 μm×95 μm | 6.6 TP | 2,2-二甲基丁烷/2-甲基-2-丁烯 | [ |
Table 2 Summary and comparison of micro-distillation/micro-rectification methods
微精馏类型 | 微通道尺度 | 分离效率 | 分离体系 | 文献 |
---|---|---|---|---|
毛细管力 | Φ10.5 mm | 5~7 cm HETP | 甲醇/水 乙醇/水 | [ |
140 μm×10 μm | — | JP-8燃料脱硫 | [ | |
30 μm×5 mm | 5 cm HETP | 甲酸甲酯/甲醇 | [ | |
350 μm×300 μm | 4 TP | 甲醇/甲苯 | [ | |
350 μm×300 μm | 2.7 TP | 苯甲醛/甲苯 | [ | |
100 μm×10 μm | — | 乙醇/水 | [ | |
Φ30 mm | — | 乙酸乙酯/乙醇 | [ | |
500 μm×1000 μm | 1.56 cm HETP | 10B/11B | [ | |
重力 | 35 μm×5 mm | 1.08 cm HETP | 甲苯/正辛烷 | [ |
Φ25/50 mm | 2.7 cm HETP | 氨气、硅烷纯化 | [ | |
Φ7 mm | 8.8 cm HETP | 正己烷/环己烷 | [ | |
Φ50 mm | 5~8 cm HETP | 甲醇/乙醇 正庚烷/甲基环己烷 | [ | |
扫气膜 | Φ677 μm | 分离系数≈5 | 甲醇/水 | [ |
真空膜 | 1000 μm×72 μm | 1.8 TP | 甲醇/水 | [ |
载气膜 | 400 μm×400 μm | — | 甲醇/甲苯 二氯甲烷/甲苯 | [ |
离心力 | 250 μm×95 μm | 6.6 TP | 2,2-二甲基丁烷/2-甲基-2-丁烯 | [ |
63 | Bittorf L, Böttger N, Neumann D, et al. Characterization of an automated spinning-band column as a module for laboratory distillation[J]. Chemical Engineering & Technology, 2021, 44(9): 1660-1667. |
64 | Kiss A A, Kattan Readi O M. An industrial perspective on membrane distillation processes[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2047-2055. |
65 | Cipollina A, Di Sparti M G, Tamburini A, et al. Development of a membrane distillation module for solar energy seawater desalination[J]. Chemical Engineering Research and Design, 2012, 90(12): 2101-2121. |
66 | Adiche C, Sundmacher K. Effect of hydrodynamic conditions on mass and heat transfer in a novel membrane based continuous micro-distillation device: experimental approach[C]//9th Distillation & Adsorption. 2010: 283-288. |
67 | Adiche C, Sundmacher K. Experimental investigation on a membrane distillation based micro-separator[J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(4): 425-434. |
68 | Zhang Y P, Kato S, Anazawa T. Vacuum membrane distillation by microchip with temperature gradient[J]. Lab on a Chip, 2010, 10(7): 899-908. |
69 | Hartman R L, Sahoo H R, Yen B C, et al. Distillation in microchemical systems using capillary forces and segmented flow[J]. Lab on a Chip, 2009, 9(13): 1843-1849. |
70 | MacInnes J M, Ortiz-Osorio J, Jordan P J, et al. Experimental demonstration of rotating spiral microchannel distillation[J]. Chemical Engineering Journal, 2010, 159(1/2/3): 159-169. |
71 | MacInnes J M, Ayash A A. Mass transfer characteristics of rotating spiral gas-liquid contacting[J]. Chemical Engineering Science, 2018, 175: 320-334. |
72 | Deadman B J, Battilocchio C, Sliwinski E, et al. A prototype device for evaporation in batch and flow chemical processes[J]. Green Chemistry, 2013, 15(8): 2050. |
73 | Cole K P, Groh J M, Johnson M D, et al. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions[J]. Science, 2017, 356(6343): 1144-1150. |
1 | Caven-Quantrill D J, Buglass A J. Comparison of micro-scale simultaneous distillation extraction and stir bar sorptive extraction for the determination of volatile organic constituents of grape juice[J]. Journal of Chromatography A, 2006, 1117(2): 121-131. |
2 | 刘涛刚. 精馏塔控制和节能优化研究综述[J]. 石化技术, 2021, 28(2): 173-174. |
Liu T G. Summary of research on distillation column control and energy saving optimization[J]. Petrochemical Industry Technology, 2021, 28(2): 173-174. | |
3 | 余国琮, 袁希钢, 李根浩. 六十年来《化工学报》上发表有关精馏过程论文的回顾[J]. 化工学报, 2013, 64(1): 11-27. |
Yu G C, Yuan X G, Li G H. Review of papers on distillation research published in “CIESC Journal” in past 60 years[J]. CIESC Journal, 2013, 64(1): 11-27. | |
4 | 杨景琦, 吴淑晶, 颜逸茗, 等. 乙醇-水体系分离技术研究进展[J]. 上海化工, 2023, 48(1): 54-56. |
Yang J Q, Wu S J, Yan Y M, et al. Research progress on separation technology of ethanol-water system[J]. Shanghai Chemical Industry, 2023, 48(1): 54-56. | |
5 | Xu Y G, Li J L, Ye Q, et al. Design and optimization for the separation of tetrahydrofuran/isopropanol/water using heat pump assisted heat-integrated extractive distillation[J]. Separation and Purification Technology, 2021, 277: 119498. |
6 | Yu B Y, Huang R, Zhong X Y, et al. Energy-efficient extraction-distillation process for separating diluted acetonitrile-water mixture: rigorous design with experimental verification from ternary liquid-liquid equilibrium data[J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 15112-15121. |
7 | 冷俊杰, 吴嘉, 冯泽民, 等. 热泵辅助甲醇精馏工艺优化及分析[J]. 化学工程, 2023, 51(4): 1-6. |
Leng J J, Wu J, Feng Z M, et al. Optimization and analysis of heat pump assisted methanol distillation process[J]. Chemical Engineering (China), 2023, 51(4): 1-6. | |
8 | 李广忠. 多效精馏节能在化工分离中的应用[J]. 广东化工, 2021, 48(22): 186-187. |
Li G Z. Application of energy-saving multi-effect distillation in chemical separation[J]. Guangdong Chemical Industry, 2021, 48(22): 186-187. | |
9 | Alarcón-Padilla D C, García-Rodríguez L. Application of absorption heat pumps to multi-effect distillation: a case study of solar desalination[J]. Desalination, 2007, 212(1/2/3): 294-302. |
10 | 辛靖, 朱元宝, 胡淼, 等. 微化工技术的研究与应用进展[J]. 石油化工高等学校学报, 2020, 33(5): 8-13. |
Xin J, Zhu Y B, Hu M, et al. Research and application progress of microchemical technology[J]. Journal of Petrochemical Universities, 2020, 33(5): 8-13. | |
11 | 骆广生, 吕阳成, 王凯. 微化工技术[M]. 北京: 化学工业出版社, 2020. |
Luo G S, Lyu Y C, Wang K. Micro Chemical Engineering and Technology[M]. Beijing: Chemical Industry Press, 2020. | |
12 | Jensen K F. Microreaction engineering—is small better?[J]. Chemical Engineering Science, 2001, 56(2): 293-303. |
13 | 赵玉潮, 张好翠, 沈佳妮, 等. 微化工技术在化学反应中的应用进展[J]. 中国科技论文在线, 2008, 3(3): 157-169. |
Zhao Y C, Zhang H C, Shen J N, et al. Research advance on chemical reaction in microchemical technology[J]. China Sciencepaper Online, 2008, 3(3): 157-169. | |
14 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
15 | Kashid M N, Kiwi-Minsker L. Microstructured reactors for multiphase reactions: state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6465-6485. |
16 | Tu S T, Yu X, Luan W, et al. Development of micro chemical, biological and thermal systems in China: a review[J]. Chemical Engineering Journal, 2010, 163(3): 165-179. |
17 | Stankiewicz A. Process intensification: transforming chemical engineering[J]. Chemical Engineering Progress, 2000, 96: 22-34. |
18 | Górak A, Stankiewicz A. Intensified reaction and separation systems[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 431-451. |
19 | Wiles C, Watts P. Recent advances in micro reaction technology[J]. Chemical Communications, 2011, 47(23): 6512-6535. |
20 | Zhang M B, Lou L J, Feng Y R, et al. A two-stage flow strategy for the synthesis of isobutyl-modified methylaluminoxane[J]. Reaction Chemistry & Engineering, 2023, 8(4): 763-769. |
21 | Zhang M B, Feng Y R, Lou L J, et al. Flow toolkit for measuring reaction enthalpy and application to highly exothermic synthesis of alkylaluminoxanes[J]. Organic Process Research & Development, 2022, 26(5): 1506-1513. |
22 | Feng Y R, Zhang M B, Zhang H M, et al. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach[J]. Chemical Engineering Journal, 2021, 425: 131750. |
23 | Feng Y R, Mu H F, Liu X, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
24 | Feng Y R, Wang J D, Zhang H M, et al. A 3D-printed continuous flow platform for the synthesis of methylaluminoxane[J]. Green Chemistry, 2021, 23(11): 4087-4094. |
25 | Xu J H, Tan J, Li S W, et al. Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 242-249. |
26 | Sattari-Najafabadi M, Nasr Esfahany M, Wu Z, et al. Mass transfer between phases in microchannels: a review[J]. Chemical Engineering and Processing-Process Intensification, 2018, 127: 213-237. |
27 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
28 | Brandner J J, Benzinger W, Schygulla U, et al. Microstructure devices for efficient heat transfer[J]. Microgravity Science and Technology, 2007, 19(3): 41-43. |
29 | 高鑫, 王佳硕, 李洪, 等. 一种微尺度高效精馏分离过程强化装置及工艺: 112843765B[P]. 2022-04-01. |
Gao X, Wang J S, Li H, et al. Microscale high-efficiency rectification separation process strengthening device and process: 112843765B[P]. 2022-04-01. | |
30 | 廖维林, 许招会, 严楠, 等. 一种大规模提纯三甲基铝粗品的方法: 109569002B[P]. 2021-06-22. |
Liao W L, Xu Z H, Yan N, et al. Method for massively purifying trimethylaluminum crude product: 109569002B[P]. 2021-06-22. | |
31 | 应盛荣, 姜战, 应悦. 一种精馏管、精馏塔及精馏板: 108579116A[P]. 2018-09-28. |
Ying S R, Jiang Z, Ying Y. Rectification tube, rectification tower and rectification plate: 108579116A[P]. 2018-09-28. | |
32 | Roudet M, Loubiere K, Gourdon C, et al. Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels[J]. Chemical Engineering Science, 2011, 66(13): 2974-2990. |
33 | Pohorecki R. Effectiveness of interfacial area for mass transfer in two-phase flow in microreactors[J]. Chemical Engineering Science, 2007, 62(22): 6495-6498. |
34 | Martin J D, Hudson S D. Mass transfer and interfacial properties in two-phase microchannel flows[J]. New Journal of Physics, 2009, 11(11): 115005. |
35 | Adeosun J T, Lawal A. Mass transfer enhancement in microchannel reactors by reorientation of fluid interfaces and stretching[J]. Sensors and Actuators B: Chemical, 2005, 110(1): 101-111. |
36 | Mansfeldt T, Biernath H. Determination of total cyanide in soils by micro-distillation[J]. Analytica Chimica Acta, 2000, 406(2): 283-288. |
37 | Ju W J, Fu L M, Yang R J, et al. Distillation and detection of SO2 using a microfluidic chip[J]. Lab on a Chip, 2012, 12(3): 622-626. |
38 | Liu C C, Wang Y N, Fu L M, et al. Micro-distillation system for formaldehyde concentration detection[J]. Chemical Engineering Journal, 2016, 304: 419-425. |
39 | Hsu S Y, Liu C C, Yang C E, et al. Multifunctional microchip-based distillation apparatus (I): Steam distillation for formaldehyde detection[J]. Analytica Chimica Acta, 2019, 1062: 94-101. |
40 | Wang Y N, Liu C C, Yang R J, et al. Microfluidic distillation chip for methanol concentration detection[J]. Analytica Chimica Acta, 2016, 912: 97-104. |
41 | Singh S, Gosu V, Upadhyaya S, et al. Process intensification of propionic acid separation—effect of channel geometry on microchannel distillation[J]. Chemical Engineering and Processing-Process Intensification, 2021, 169: 108599. |
42 | Singh S, Mohan R, Gosu V, et al. Process intensification of propionic acid extraction and its recovery by distillation in microchannel[J]. Chemical Engineering and Processing - Process Intensification, 2020, 157: 108150. |
43 | Arora R. Distributive distillation enabled by microchannel process technology[R]. Velocys Inc., 2013. |
44 | Yeh G C, Shah M S, Yeh B V. Vapor-liquid equilibria of nonelectrolyte solutions in small capillaries (1): Experimental determination of equilibrium composition[J]. Langmuir, 1986, 2(1): 90-96. |
45 | 张在春. 利用活性填料分离共沸物系的基础研究[D]. 天津: 天津大学, 2009. |
Zhang Z C. Basic study on separation of azeotropic system by active packing[D]. Tianjin: Tianjin University, 2009. | |
46 | Abu Al-Rub F A, Banat F A, Simandl J. Isothermal vapour-liquid equilibrium of 1-propanol-water mixtures in the presence of molecular sieves[J]. Chemical Engineering Research and Design, 2000, 78(5): 779-782. |
47 | Abu Al-Rub F A, Banat F A, Jumah R. Vapor-liquid equilibrium of ethanol-water system in the presence of molecular sieves[J]. Separation Science and Technology, 1999, 34(12): 2355-2368. |
48 | Seok D R, Hwang S T. Zero-gravity distillation utilizing the heat pipe principle(micro-distillation)[J]. AIChE Journal, 1985, 31(12): 2059-2065. |
49 | Huang X W, King D A, Zheng F, et al. Hydrodesulfurization of JP-8 fuel and its microchannel distillate using steam reformate[J]. Catalysis Today, 2008, 136(3/4): 291-300. |
50 | Sundberg A, Uusi-Kyyny P, Alopaeus V. Novel micro-distillation column for process development[J]. Chemical Engineering Research and Design, 2009, 87(5): 705-710. |
51 | Sundberg A, Uusi-Kyyny P, Jakobsson K, et al. Development and modeling of micro distillation column[C]//9th Distillation & Adsorption. 2010: 217-222. |
52 | Sundberg A T, Uusi-Kyyny P, Jakobsson K, et al. Control of reflux and reboil flow rates for milli and micro distillation[J]. Chemical Engineering Research and Design, 2013, 91(5): 753-760. |
53 | Lam K F, Cao E, Sorensen E, et al. Development of multistage distillation in a microfluidic chip[J]. Lab on a Chip, 2011, 11(7): 1311-1317. |
54 | Lam K F, Sorensen E, Gavriilidis A. On-chip microscale distillation for acetone-water separation[C]//14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2010: 357-359. |
55 | Foerster M, Lam K F, Sorensen E, et al. In situ monitoring of microfluidic distillation[J]. Chemical Engineering Journal, 2013, 227: 13-21. |
56 | Stanisch B, Wellsandt T, Strube J. Development of micro separation technology modules (part 2): Distillation[J]. Chemie Ingenieur Technik, 2015, 87(9): 1207-1214. |
57 | 胡运通, 艾波, 许保云, 等. 填料毛细管精馏技术原理分析[J]. 化学工程, 2019, 47(10): 10-15. |
Hu Y T, Ai B, Xu B Y, et al. Theoretical analysis of capillary distillation with packing[J]. Chemical Engineering (China), 2019, 47(10): 10-15. | |
58 | 胡运通, 艾波, 许保云, 等. 毛细管精馏分离乙酸乙酯-乙醇共沸物[J]. 化学工程, 2019, 47(8): 35-38, 44. |
Hu Y T, Ai B, Xu B Y, et al. Separation of ethyl acetate-ethanol azeotrope by capillary distillation[J]. Chemical Engineering (China), 2019, 47(8): 35-38, 44. | |
59 | Tang Y, Zheng Y J, Tian J Z, et al. Process intensification of chemical exchange method for boron isotope separation using micro-channel distillation technology[J]. Micromachines, 2021, 12(10): 1222. |
60 | Ziogas A, Cominos V, Kolb G, et al. Development of a microrectification apparatus for analytical and preparative applications[J]. Chemical Engineering & Technology, 2012, 35(1): 58-71. |
61 | Trubyanov M M, Mochalov G M, Vorotyntsev V M, et al. High-pressure distillation: simultaneous impact of pressure, temperature and loading on separation performance during distillation of high-purity gases in high-performance randomly-packed columns[J]. Separation and Purification Technology, 2014, 135: 117-126. |
62 | Mardani S, Ojala L S, Uusi-Kyyny P, et al. Development of a unique modular distillation column using 3D printing[J]. Chemical Engineering and Processing-Process Intensification, 2016, 109: 136-148. |
[1] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[2] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[3] | Weigu WEN, Zhihong YUAN, Kai WANG, Guangsheng LUO. Microdispersion droplet optical fiber detection [J]. CIESC Journal, 2024, 75(1): 211-220. |
[4] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[5] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[6] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[7] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[8] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[9] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[10] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[11] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[12] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[15] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||