CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4840-4851.DOI: 10.11949/0438-1157.20231037
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinwei MA(), Xingsen MU(), Zhu LONG, Shengqiang SHEN
Received:
2023-10-07
Revised:
2023-12-24
Online:
2024-02-19
Published:
2023-12-25
Contact:
Xingsen MU
通讯作者:
牟兴森
作者简介:
马欣蔚(1998—),女,硕士研究生,mxwinnie@163.com
基金资助:
CLC Number:
Xinwei MA, Xingsen MU, Zhu LONG, Shengqiang SHEN. Prediction of heat transfer coefficient of horizontal tube falling film evaporation based on GA-BP neural network[J]. CIESC Journal, 2023, 74(12): 4840-4851.
马欣蔚, 牟兴森, 龙珠, 沈胜强. 基于GA-BP神经网络的横管降膜蒸发传热系数预测[J]. 化工学报, 2023, 74(12): 4840-4851.
Add to citation manager EndNote|Ris|BibTeX
实验参数 | 不确定度 / % |
---|---|
工质质量流量/(kg/h) | 0.50 |
加热棒电压/V | 0.20 |
加热棒电流/A | 0.20 |
加热棒加热面积/m2 | 1.0 |
喷淋长度/m | 5.0 |
蒸发器压力/MPa | 0.5 |
水箱、蒸汽、传热管表面温度/℃ | 5.0 |
喷淋密度/(kg/(m·s)) | 5.02 |
加热棒热通量/(W/m2) | 1.04 |
传热系数/(kW/(m2·K)) | 5.11 |
Table 1 Uncertainty of experimental parameters
实验参数 | 不确定度 / % |
---|---|
工质质量流量/(kg/h) | 0.50 |
加热棒电压/V | 0.20 |
加热棒电流/A | 0.20 |
加热棒加热面积/m2 | 1.0 |
喷淋长度/m | 5.0 |
蒸发器压力/MPa | 0.5 |
水箱、蒸汽、传热管表面温度/℃ | 5.0 |
喷淋密度/(kg/(m·s)) | 5.02 |
加热棒热通量/(W/m2) | 1.04 |
传热系数/(kW/(m2·K)) | 5.11 |
神经网络结构 | 激活函数 | 训练方法 | 学习 速率 | 训练 目标 | 最大训练次数 |
---|---|---|---|---|---|
5-10-1 | 隐含层:tansig 输出层:purelin | LM算法 | 0.01 | 1×10-5 | 1000 |
Table 2 Parameters of the BP neural network
神经网络结构 | 激活函数 | 训练方法 | 学习 速率 | 训练 目标 | 最大训练次数 |
---|---|---|---|---|---|
5-10-1 | 隐含层:tansig 输出层:purelin | LM算法 | 0.01 | 1×10-5 | 1000 |
种群规模 | 交叉概率 | 变异概率 | 进化代数 | 染色体编码长度 |
---|---|---|---|---|
50 | 0.9 | 0.1 | 100 | 170 |
Table 3 Parameters of the GA-BP neural network
种群规模 | 交叉概率 | 变异概率 | 进化代数 | 染色体编码长度 |
---|---|---|---|---|
50 | 0.9 | 0.1 | 100 | 170 |
文献 | 传热关联式 | 序号 |
---|---|---|
[ | 适用范围:水,D = 10~40 mm,Re = 800 ~ 5000,Pr=1.75 ~ 7.02,Ar = 213 ~ 1546 | (17) |
[ | 适用范围:过冷水、乙二醇、水-乙二醇混合物,Pr = 5.5 ~ 13,Re < 600,q < 20 kW/m2,s < 20 mm | (18) |
[ | 适用范围:水,Re = 198 ~ 2485,Pr = 1.67 ~ 12.49,We = 0.0000048 ~ 0.01895,s/D = 0.11 ~ 2.0 | (19) |
Table 4 The correlations of heat transfer coefficient of horizontal tube falling film evaporation
文献 | 传热关联式 | 序号 |
---|---|---|
[ | 适用范围:水,D = 10~40 mm,Re = 800 ~ 5000,Pr=1.75 ~ 7.02,Ar = 213 ~ 1546 | (17) |
[ | 适用范围:过冷水、乙二醇、水-乙二醇混合物,Pr = 5.5 ~ 13,Re < 600,q < 20 kW/m2,s < 20 mm | (18) |
[ | 适用范围:水,Re = 198 ~ 2485,Pr = 1.67 ~ 12.49,We = 0.0000048 ~ 0.01895,s/D = 0.11 ~ 2.0 | (19) |
预测模型 | MAPE | MAE | MSE | 相对误差所占 比例/% | |
---|---|---|---|---|---|
<10% | <15% | ||||
BP神经网络 | 11.90% | 0.5383 | 0.4491 | 45.95 | 70.27 |
GA-BP神经网络 | 8.10% | 0.3448 | 0.1656 | 56.76 | 94.59 |
传热关联式式(17) | 27.21% | 1.1220 | 1.4572 | 2.70 | 27.03 |
传热关联式式(18) | 69.03% | 2.9360 | 9.2439 | 2.70 | 2.70 |
传热关联式式(19) | 21.45% | 0.8794 | 0.8759 | 21.62 | 21.62 |
Table 5 The comparison of prediction accuracy among different models
预测模型 | MAPE | MAE | MSE | 相对误差所占 比例/% | |
---|---|---|---|---|---|
<10% | <15% | ||||
BP神经网络 | 11.90% | 0.5383 | 0.4491 | 45.95 | 70.27 |
GA-BP神经网络 | 8.10% | 0.3448 | 0.1656 | 56.76 | 94.59 |
传热关联式式(17) | 27.21% | 1.1220 | 1.4572 | 2.70 | 27.03 |
传热关联式式(18) | 69.03% | 2.9360 | 9.2439 | 2.70 | 2.70 |
传热关联式式(19) | 21.45% | 0.8794 | 0.8759 | 21.62 | 21.62 |
1 | Román-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985. |
2 | 赵龙陆, 陈晔. 影响水平管降膜蒸发因素的实验研究[J]. 化工机械, 2014, 41(1): 47-50. |
Zhao L L, Chen Y. Experimental study of factors influencing horizontal tube falling film evaporator[J]. Chemical Engineering & Machinery, 2014, 41(1): 47-50. | |
3 | 沈胜强, 梁刚涛, 龚路远, 等. 水平管降膜蒸发器传热系数空间分布[J]. 化工学报, 2011, 62(12): 3381-3385. |
Shen S Q, Liang G T, Gong L Y, et al. Distribution of heat transfer coefficient in horizontal-tube falling film evaporator[J]. CIESC Journal, 2011, 62(12): 3381-3385. | |
4 | 马学虎, 高大志, 安家明, 等. 功能表面降膜蒸发传热特性的实验研究[J]. 热科学与技术, 2003, 2(2): 119-123. |
Ma X H, Gao D Z, An J M, et al. Preliminary investigation of seawater falling film evaporation on treated functional surfaces[J]. Journal of Thermal Science and Technology, 2003, 2(2): 119-123. | |
5 | 解利昕, 周文萌, 陈飞. 水平管降膜蒸发器的传热性能[J]. 化工进展, 2014, 33(11): 2878-2881, 2893. |
Xie L X, Zhou W M, Chen F. Study on heat-transfer performance of horizontal tube falling film evaporator[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2878-2881, 2893. | |
6 | Shi N, Liu Q Y, Zhang Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry, 2013, 15(7): 1967-1974. |
7 | Yang L P, Shen S Q. Experimental study of falling film evaporation heat transfer outside horizontal tubes[J]. Desalination, 2008, 220(1/2/3): 654-660. |
8 | Liu S L, Mu X S, Shen S Q, et al. Experimental study on the distribution of local heat transfer coefficient of falling film heat transfer outside horizontal tube[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121031. |
9 | Zhao C Y, Ji W T, He Y L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2018, 119: 259-270. |
10 | 李彪, 陆孟杰, 左乐, 等. 基于遗传算法和人工神经网络的高性能混凝土劈裂抗拉强度预测[J]. 施工技术, 2023, 52(2): 16-19, 41. |
Li B, Lu M J, Zuo L, et al. Splitting tensile strength prediction of high performance concrete based on genetic algorithm and artificial neural network[J]. Construction Technology, 2023, 52(2): 16-19, 41. | |
11 | Wang X H, Li B, Yan Y Y, et al. Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model[J]. Applied Thermal Engineering, 2019, 149: 1134-1141. |
12 | 李海涛, 邵泽东. 基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020, 39(1): 57-62. |
Li H T, Shao Z D. Research on seawater quality evaluation model based on brain storm optimization algorithm and BP neural network[J]. Journal of Applied Oceanography, 2020, 39(1): 57-62. | |
13 | Thibault J, Grandjean B P A. A neural network methodology for heat transfer data analysis[J]. International Journal of Heat and Mass Transfer, 1991, 34(8): 2063-2070. |
14 | Ma D L, Zhou T, Chen J, et al. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. Nuclear Engineering and Design, 2017, 320: 400-408. |
15 | Kuang Y W, Han F, Sun L J, et al. Saturated hydrogen nucleate flow boiling heat transfer coefficients study based on artificial neural network[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121406. |
16 | 颜建国, 郑书闽, 郭鹏程. 高热流条件过冷沸腾传热系数试验研究及神经网络预测[J]. 工程热物理学报, 2022, 43(6): 1650-1659. |
Yan J G, Zheng S M, Guo P C. Experimental study on heat transfer coefficient for subcooled water flow boiling under high heat fluxes and its prediction using neural network[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1650-1659. | |
17 | Hughes M T, Fronk B M, Garimella S. Universal condensation heat transfer and pressure drop model and the role of machine learning techniques to improve predictive capabilities[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121712. |
18 | 牟兴森. 横管外降膜流动与蒸发传热研究[D]. 大连: 大连理工大学, 2013. |
Mu X S. Study on falling film flow and evaporation heat transfer outside horizontal tube[D]. Dalian: Dalian University of Technology, 2013. | |
19 | 陈学. 水平管外海水降膜流动与蒸发传热过程研究[D]. 大连: 大连理工大学, 2015. |
Chen X. Study on falling film flow and evaporation heat transfer process of seawater outside horizontal pipe[D]. Dalian: Dalian University of Technology, 2015. | |
20 | 陈志赟. 不同管径水平管降膜蒸发传热特性实验研究[D]. 大连: 大连理工大学, 2022. |
Chen Z Y. Experimental study on heat transfer characteristics of falling film evaporation in horizontal tubes with different diameters[D]. Dalian: Dalian University of Technology, 2022. | |
21 | 王光明, 王爱平. 遗传算法优化BP神经网络的非线性函数拟合研究[J]. 赤峰学院学报(自然科学版), 2014, 30(22): 29-32. |
Wang G M, Wang A P. Study on nonlinear function fitting of BP neural network optimized by genetic algorithm[J]. Journal of Chifeng University (Natural Science Edition), 2014, 30(22): 29-32. | |
22 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
23 | Swingler K. Applying Neural Networks: A Practical Guide[M]. Academic Press, 1996. |
24 | Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
25 | Yang F B, Cho H, Zhang H G, et al. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery[J]. Energy Conversion and Management, 2018, 164: 15-26. |
26 | Rigler A K, Irvine J M, Vogl T P. Rescaling of variables in back propagation learning[J]. Neural Networks, 1991, 4(2): 225-229. |
27 | Liu Z J, Liu A X, Wang C Y, et al. Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification[J]. Future Generation Computer Systems, 2004, 20(7): 1119-1129. |
28 | 包子阳, 余继周, 杨杉. 智能优化算法及其MATLAB实例[M]. 2版. 北京: 电子工业出版社, 2018. |
Bao Z Y, Yu J Z, Yang S. Intelligent Optimization Algorithm and Its MATLAB Example[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018. | |
29 | 王小川. MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013. |
Wang X C. Analysis of 43 Cases of MATLAB Neural Networks[M]. Beijing: Beihang University Press, 2013. | |
30 | Liu Z H, Zhu Q Z, Chen Y M. Evaporation heat transfer of falling water film on a horizontal tube bundle[J]. Heat Transfer—Asian Research, 2002, 31(1): 42-55. |
31 | Wang X F, Hrnjak P S, Elbel S, et al. Heat transfer performance for a falling-film on horizontal flat tubes[J]. Journal of Heat Transfer, 2013, 135(7): 072901. |
32 | 蒋淳, 陈振乾. 水平管外降膜蒸发流动和传热特性数值模拟[J]. 化工学报, 2018, 69(10): 4224-4230. |
Jiang C, Chen Z Q. Numerical simulation of fluid flow and heat transfer characteristics of falling film evaporation outside horizontal tubes[J]. CIESC Journal, 2018, 69(10): 4224-4230. | |
33 | 靳蒲航, 赵创要, 刘霁鑫, 等. R410 A在水平光滑单管外降膜蒸发实验研究[EB/OL]. 中国科技论文在线, . |
Jin P H, Zhao C Y, Liu J X, et al. Experimental study on R410A falling film evaporation outside a horizontal smooth single tube[EB/OL]. China Science and Technology Paper Online, . | |
34 | 杨洛鹏, 邹振宇, 李红有. 水平管外降膜蒸发传热特性的数值模拟[J]. 热能动力工程, 2017, 32(10): 24-28, 138. |
Yang L P, Zou Z Y, Li H Y. Numerical simulation of the heat transfer characteristics of the falling-film vaporization outside a horizontal tube[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(10): 24-28, 138. | |
35 | Struve H. Heat transfer to an evaporating falling refrigerant film[C]//12th Congress of the International Institute of Refrigeration. Madrid, 1967. |
36 | Xu L, Ge M R, Wang S C, et al. Heat-transfer film coefficients of falling film horizontal tube evaporators[J]. Desalination, 2004, 166: 223-230. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[7] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||