CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 354-365.DOI: 10.11949/0438-1157.20231066
• Process system engineering • Previous Articles Next Articles
Gang YIN1(), Zhongyou QIAN1, Wenqi CAO2, Pengcheng QUAN2, Hengquan XU2, Feiya YAN3, Min WANG4, Yu XIANG5, Dongmei XIANG6, Jian LU3, Yuhai ZUO7, Wen HE8, Runting LU3
Received:
2023-10-16
Revised:
2023-12-12
Online:
2024-03-11
Published:
2024-01-25
Contact:
Gang YIN
尹刚1(), 钱中友1, 曹文琦2, 全鹏程2, 许亨权2, 颜非亚3, 王民4, 向禹5, 向冬梅6, 卢剑3, 左玉海7, 何文8, 卢润廷3
通讯作者:
尹刚
作者简介:
尹刚(1964—),男,博士,教授,yk115@cqu.edu.cn
基金资助:
CLC Number:
Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM[J]. CIESC Journal, 2024, 75(1): 354-365.
尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365.
Add to citation manager EndNote|Ris|BibTeX
类别 | 指标范围 | 健康状态等级 | ||
---|---|---|---|---|
炉帮厚度d/cm | 电流效率 | 电解温度T/℃ | ||
1 | d≥12 | 94%~100% | 950<T<965 | 优 |
2 | 10≤d<12 | 92%~94% | 935<T≤950 | 良 |
3 | 8≤d<10 | 85%~92% | 965≤T<975 | 中 |
4 | d<8 | 70%~85% | T≤935 or T≥975 | 差 |
Table 1 Criteria for judging the health state of aluminum electrolytic cells
类别 | 指标范围 | 健康状态等级 | ||
---|---|---|---|---|
炉帮厚度d/cm | 电流效率 | 电解温度T/℃ | ||
1 | d≥12 | 94%~100% | 950<T<965 | 优 |
2 | 10≤d<12 | 92%~94% | 935<T≤950 | 良 |
3 | 8≤d<10 | 85%~92% | 965≤T<975 | 中 |
4 | d<8 | 70%~85% | T≤935 or T≥975 | 差 |
参数 | 槽电压 | 分子比 | 铝水平 | 电解质水平 | 氧化铝浓度 | 出铝量 | 氟化盐含量 | 效应系数 |
---|---|---|---|---|---|---|---|---|
电解温度 | 0.94 | 0.92 | 0.91 | 0.89 | 0.85 | 0.83 | 0.79 | 0.74 |
电流效率 | 0.92 | 0.91 | 0.89 | 0.88 | 0.82 | 0.96 | 0.85 | 0.78 |
炉帮厚度 | 0.96 | 0.89 | 0.92 | 0.91 | 0.92 | 0.79 | 0.88 | 0.83 |
Table 2 The Pearson correlation coefficient for the health state parameters of aluminum electrolytic cells
参数 | 槽电压 | 分子比 | 铝水平 | 电解质水平 | 氧化铝浓度 | 出铝量 | 氟化盐含量 | 效应系数 |
---|---|---|---|---|---|---|---|---|
电解温度 | 0.94 | 0.92 | 0.91 | 0.89 | 0.85 | 0.83 | 0.79 | 0.74 |
电流效率 | 0.92 | 0.91 | 0.89 | 0.88 | 0.82 | 0.96 | 0.85 | 0.78 |
炉帮厚度 | 0.96 | 0.89 | 0.92 | 0.91 | 0.92 | 0.79 | 0.88 | 0.83 |
样本数 | 训练集样本数 | 测试集样本数 | 状态 | 标签 |
---|---|---|---|---|
820 | 738 | 82 | 优 | 1 |
620 | 558 | 62 | 良 | 2 |
730 | 657 | 73 | 中 | 3 |
470 | 423 | 47 | 差 | 4 |
Table 3 State labels and sample distribution
样本数 | 训练集样本数 | 测试集样本数 | 状态 | 标签 |
---|---|---|---|---|
820 | 738 | 82 | 优 | 1 |
620 | 558 | 62 | 良 | 2 |
730 | 657 | 73 | 中 | 3 |
470 | 423 | 47 | 差 | 4 |
参数 | 数值 |
---|---|
数据获取时间 | 2020年10月至2022年9月 |
电解槽数量 | 15(201#~215#槽) |
特征数量 | 8 |
实验样本数 | 2640 |
训练集/测试集占比 | 9∶1 |
Table 4 Experimental data acquisition information
参数 | 数值 |
---|---|
数据获取时间 | 2020年10月至2022年9月 |
电解槽数量 | 15(201#~215#槽) |
特征数量 | 8 |
实验样本数 | 2640 |
训练集/测试集占比 | 9∶1 |
1 | 傅长宏. 电解槽槽况综合分析评价手段[J]. 世界有色金属, 2012(11): 36-39. |
Fu C H. Comprehensive analysis and evaluation means of electrolytic cell condition[J]. World Nonferrous Metals, 2012(11): 36-39. | |
2 | Pass J M, Zheng Y, Wead W B, et al. Classification of cell states for aluminum electrolysis based on data[J]. Computer Engineering & Applications, 2015, 180(3): H946-H955. |
3 | 邓少松. 基于阳极电流分布的铝电解槽异常诊断[D]. 北京: 北方工业大学, 2017. |
Deng S S. The abnormal diagnosis of aluminum reduction cell based on anode current[D]. Beijing: North China University of Technology, 2017. | |
4 | 张旖芮, 阳春华, 朱红求. 基于数据的铝电解槽况分类[J]. 计算机工程与应用, 2015, 51(11): 233-237. |
Zhang Y R, Yang C H, Zhu H Q. Classification of cell states for aluminum electrolysis based on data[J]. Computer Engineering and Applications, 2015, 51(11): 233-237. | |
5 | 侯婕, 田学法, 孔淑麒. 基于LSTM的铝电解槽况预测[J]. 轻金属, 2021(1): 33-37, 62. |
Hou J, Tian X F, Kong S Q. Prediction of aluminum pot conditions based on LSTM[J]. Light Metals, 2021(1): 33-37, 62. | |
6 | 曹丹阳, 孔淑麒, 高磊. 基于高斯混合模型的铝电解槽况聚类研究[J]. 轻金属, 2020(2): 26-30. |
Cao D Y, Kong S Q, Gao L. Research on state clustering of aluminum electrolytic cell based on Gaussian mixture model[J]. Light Metals, 2020(2): 26-30. | |
7 | 韦业辉. 基于火眼图像的铝电解槽况诊断及过热度识别研究[D]. 南宁: 广西大学, 2022. |
Wei Y H. Research on status diagnosis and superheat degree identification of aluminum reduction cell based on fire eye image[D].Nanning: Guangxi University, 2022. | |
8 | 陈祖国, 李勇刚, 卢明, 等. 基于贝叶斯概率语义网的铝电解槽况知识表示模型与约简方法[J]. 控制与决策, 2020, 35(7): 1569-1583. |
Chen Z G, Li Y G, Lu M, et al. Aluminum electrolysis cell condition knowledge representation model and reduction method based on Bayesian probability semantic network[J]. Control and Decision, 2020, 35(7): 1569-1583. | |
9 | 李界家, 高天浩, 纪昕洋. 基于布谷鸟-支持向量机和深度学习的铝电解异常状态诊断方法[J]. 轻金属, 2019(10): 32-40. |
Li J J, Gao T H, Ji X Y. Aluminum electrolysis abnormal state diagnosis method based on cuckoo support vector machine and deep learning[J]. Light Metals, 2019(10): 32-40. | |
10 | 崔桂梅, 薛法远, 刘丕亮. 基于槽况分类的铝电解电流效率预测研究[J]. 计算机仿真, 2017, 34(1): 288-291, 387. |
Cui G M, Xue F Y, Liu P L. Prediction modelof the current efficiency for aluminum electrolysis process based on status classification[J]. Computer Simulation, 2017, 34(1): 288-291, 387. | |
11 | 于世福, 陈兆娜. 基于主元分析的铝电解槽故障诊断[J]. 电子世界, 2019(22): 174-175. |
Yu S F, Chen Z N. Fault diagnosis of aluminum reduction cell based on principal component analysis[J]. Electronics World, 2019(22): 174-175. | |
12 | 刘志元. 基于多元统计方法的电解铝生产流程监测及故障诊断策略的研究[J]. 轻金属, 2018(7): 58-61. |
Liu Z Y. Research on process monitoring and fault diagnosis strategy of aluminum production based on multiple statistical methods[J]. Light Metals, 2018(7): 58-61. | |
13 | Wang B J, Zhang X L, Xing S, et al. Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis[J]. ISA Transactions, 2021, 118: 207-218. |
14 | Mathur A, Foody G M. Multiclass and binary SVM classification: implications for training and classification users[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 241-245. |
15 | 吴海燕, 陈晓磊, 范国轩. 一种自适应核SMOTE-SVM算法用于不平衡数据分类[J]. 北京化工大学学报(自然科学版), 2023, 50(2): 97-104. |
Wu H Y, Chen X L, Fan G X. An adaptive kernel SMOTE- SVM algorithm for imbalanced data classification[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2023, 50(2): 97-104. | |
16 | 王众, 鲁淑霞. 不平衡数据分类问题的基于间隔放大损失的支持向量机[J]. 重庆邮电大学学报(自然科学版), 2023, 35(1): 70-78. |
Wang Z, Lu S X. Support vector machine with margin magnification loss for imbalanced data classification problems[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(1): 70-78. | |
17 | 鲁淑霞, 周谧, 金钊. 非均衡加权随机梯度下降SVM在线算法[J]. 计算机科学与探索, 2017, 11(10): 1662-1671. |
Lu S X, Zhou M, Jin Z. Imbalanced weighted stochastic gradient descent online algorithm for SVM[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(10): 1662-1671. | |
18 | 尹刚, 李伊惠, 何飞, 等. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
Yin G, Li Y H, He F, et al. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM[J]. CIESC Journal, 2023, 74(8): 3419-3428. | |
19 | 孙同敏. 基于DBN-SVM的航空发动机健康状态评估方法[J]. 控制工程, 2021, 28(6): 1163-1170. |
Sun T M. Research on aero engine health state assessment using DBN and SVM[J]. Control Engineering of China, 2021, 28(6): 1163-1170. | |
20 | 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534. |
Wang P, Fan L F, Cheng Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534. | |
21 | 叶远波, 李端超, 谢民, 等. 基于SSA-SVM的继电保护装置状态评估方法研究[J]. 电力系统保护与控制, 2022, 50(8): 171-178. |
Ye Y B, Li D C, Xie M, et al. A state evaluation method for a relay protection device based on SSA-SVM[J]. Power System Protection and Control, 2022, 50(8): 171-178. | |
22 | 魏永合, 王明华. 基于EEMD和SVM的滚动轴承退化状态识别[J]. 计算机集成制造系统, 2015, 21(9): 2475-2483. |
Wei Y H, Wang M H. Degradation state recognition of rolling bearing based on EEMD and SVM[J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2475-2483. | |
23 | Li R, Li W R, Zhang H N, et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM[J]. Frontiers in Energy Research, 2021, 9: 693249. |
24 | Lan Y F, Zhang Y Q, Lin W W. Diagnosis algorithms for indirect bridge health monitoring via an optimized AdaBoost-linear SVM[J]. Engineering Structures, 2023, 275: 115239. |
25 | 姚宏亮. 基于组合加权朴素贝叶斯的铝电解槽健康度评价方法及系统[D]. 长沙: 中南大学, 2022. |
Yao H L. Aluminum electrolytic cell health evaluation method and system based on combinatorial weighted naive Bayes[D]. Changsha: Central South University, 2022. | |
26 | Zhou W, Shi J Y, Yin G, et al. Optimal control for aluminum electrolysis process using adaptive dynamic programming[J]. IEEE Access, 2020, 8: 220374-220383. |
27 | 尹刚, 陈根, 何文, 等. 基于SDAE和随机森林的铝电解槽阳极效应预测方法研究[J]. 稀有金属, 2021, 45(4): 428-436. |
Yin G, Chen G, He W, et al. A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest[J]. Chinese Journal of Rare Metals, 2021, 45(4): 428-436. | |
28 | 尹刚, 陈根, 何文, 等. 基于深度学习的300 kA铝电解槽阳极效应预测[J]. 中国有色金属学报, 2021, 31(1): 161-170. |
Yin G, Chen G, He W, et al. Anode effect prediction of 300 kA aluminium electrolysis cell based on deep learning[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 161-170. | |
29 | 尹刚, 向冬梅, 王民, 等. 基于数据驱动的铝电解槽剩余寿命预测方法研究[J]. 稀有金属, 2023, 47(2): 273-280. |
Yin G, Xiang D M, Wang M, et al. Prediction method of remaining life of aluminum reduction cell based on data drive[J]. Chinese Journal of Rare Metals, 2023, 47(2): 273-280. | |
30 | Zhou W, Zheng F J, Yin G, et al. YOLOTrashCan: a deep learning marine debris detection network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. |
31 | Rätsch G, Onoda T, Müller K R. Soft margins for AdaBoost[J]. Machine Learning, 2001, 42(3): 287-320. |
32 | 汤卫雄, 程云章, 张天逸, 等. 基于脑电非线性特征和AdaBoost算法的诱导期麻醉深度检测[J]. 中国医学物理学杂志, 2023, 40(5): 616-621. |
Tang W X, Cheng Y Z, Zhang T Y, et al. Monitoring depth of anesthesia during induction using EEG nonlinear characteristics combined with AdaBoost algorithm[J]. Chinese Journal of Medical Physics, 2023, 40(5): 616-621. | |
33 | 鲁淑霞, 张振莲, 翟俊海. 代价敏感惩罚AdaBoost算法的非平衡数据分类[J]. 南京航空航天大学学报, 2023, 55(2): 339-346. |
Lu S X, Zhang Z L, Zhai J H. Imbalanced data classification based on cost sensitivity penalized AdaBoost algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 339-346. | |
34 | Merler S, Caprile B, Furlanello C. Parallelizing AdaBoost by weights dynamics[J]. Computational Statistics & Data Analysis, 2007, 51(5): 2487-2498. |
35 | Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
36 | Wang D S, Tan D P, Liu L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408. |
37 | 曾振双, 贺昕兴. 500 kA石墨化阴极电解槽数学管控模型研究及生产实践[J]. 金属材料与冶金工程, 2023, 51(4): 33-37. |
Zeng Z S, He X X. Research on mathematical control model and production practice of 500 kA graphitized cathode electrolytic cell[J]. Metal Materials and Metallurgy Engineering, 2023, 51(4): 33-37. | |
38 | 兰海波, 靳开强, 杜青松. 320 kA预焙铝电解槽电流效率的影响因素及提高方法[J]. 四川有色金属, 2022(1): 36-39. |
Lan H B, Jin K Q, Du Q S. Influencing factors and improving methods of current efficiency of 320 kA prebaked aluminum reduction cell[J]. Sichuan Nonferrous Metals, 2022(1): 36-39. | |
39 | 邱竹贤. 预焙槽练铝[M]. 北京: 冶金工业出版社, 2006. |
Qiu Z X. Prebaked Aluminium[J]. Beijing: Metallurgical Industry Press, 2006. | |
40 | Yu K, Liu L, Li J Y, et al. Multi-source causal feature selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(9): 2240-2256. |
41 | Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215. |
[1] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[10] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[11] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[12] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[13] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[14] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[15] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||