CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 366-376.DOI: 10.11949/0438-1157.20230659
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Wen WEN(), Huiyan WANG, Jinghong ZHOU(), Yueqiang CAO, Xinggui ZHOU
Received:
2023-06-30
Revised:
2023-10-27
Online:
2024-03-11
Published:
2024-01-25
Contact:
Jinghong ZHOU
通讯作者:
周静红
作者简介:
闻文(1982—),男,硕士研究生,y92220001@mail.ecust.edu.cn
基金资助:
CLC Number:
Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth[J]. CIESC Journal, 2024, 75(1): 366-376.
闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
αSEI | 0.69 |
H | 11 |
J | 1.9×10-4 |
f/s-1 | 1.1×103 |
USEI/V | 0 |
MSEI/(kg/mol) | 0.16 |
ρSEI/(kg/m3) | 1600 |
δ0/nm | 1 |
κSEI/(S/m) | 5×10-6 |
T/K | 298.15 |
Table 1 Parameters for the SEI film growth model[38]
参数 | 数值 |
---|---|
αSEI | 0.69 |
H | 11 |
J | 1.9×10-4 |
f/s-1 | 1.1×103 |
USEI/V | 0 |
MSEI/(kg/mol) | 0.16 |
ρSEI/(kg/m3) | 1600 |
δ0/nm | 1 |
κSEI/(S/m) | 5×10-6 |
T/K | 298.15 |
Fig.4 Variation of SEI film thickness and dissolved deposit concentration with the number of cycles for batteries with different sized anode particles
1 | Xiong R, Pan Y, Shen W X, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110048. |
2 | Zhang L L, Ma Y L, Cheng X Q, et al. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of Power Sources, 2016, 329: 255-261. |
3 | Liu J L, Duan Q L, Ma M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. |
4 | Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries—a post-mortem study[J]. Journal of Power Sources, 2014, 262:129-135. |
5 | Yang X G, Leng Y J, Zhang G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
6 | Dey A N. Film formation on lithium anode in propylene carbonate[J]. Journal of the Electrochemical Society, 1970, 117(8): C248. |
7 | Aurbach D, Markovsky B, Levi M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999, 81/82: 95-111. |
8 | Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
9 | Aurbach D, Levi M D, Levi E, et al. Failure and stabilization mechanisms of graphite electrodes[J]. The Journal of Physical Chemistry B, 1997, 101(12): 2195-2206. |
10 | Spotte-Smith E W C, Kam R L, Barter D, et al. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries[J]. ACS Energy Letters, 2022, 7(4): 1446-1453. |
11 | Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances[J]. Journal of Energy Storage, 2022, 47: 103564. |
12 | Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999, 45(1/2): 67-86. |
13 | Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium[J]. The Journal of Physical Chemistry B, 1997, 101(23): 4630-4640. |
14 | Bhattacharya S, Riahi A R, Alpas A T. Role of voltage scan rate on degradation of graphite electrodes electrochemically cycled vs. Li/Li+ [J]. MRS Online Proceedings Library, 2011, 1388(1): 1-6. |
15 | An S J, Li J L, Daniel C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. |
16 | Yan J, Zhang J, Su Y C, et al. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(5): 1785-1794. |
17 | Steinhauer M, Diemant T, Heim C, et al. Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47(2): 249-259. |
18 | Cresce A V, Russell S M, Baker D R, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano Letters, 2014, 14(3): 1405-1412. |
19 | Zheng J Y, Zheng H, Wang R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238. |
20 | Bennion D N, Littauer E L. Mathematical model of a lithium-water electrochemical power cell[J]. Journal of the Electrochemical Society, 1976, 123(10):1462-1469. |
21 | Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. |
22 | Safari M, Morcrette M, Teyssot A, et al. Multimodal physics-based aging model for life prediction of Li-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156(3): A145-A153. |
23 | Yan C, Jiang L L, Yao Y X, et al. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(15): 8521-8525. |
24 | Yao Y X, Wan J, Liang N Y, et al. Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries[J]. Journal of the American Chemical Society, 2023, 145(14): 8001-8006. |
25 | Joho F, Rykart B, Blome A, et al. Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries[J]. Journal of Power Sources, 2001, 97/98: 78-82. |
26 | Li M, Wu Y, Zhao F, et al. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries[J]. Carbon, 2014, 69: 444-451. |
27 | Markovsky B, Nimberger A, Talyosef Y, et al. On the influence of additives in electrolyte solutions on the electrochemical behavior of carbon/LiCoO2 cells at elevated temperatures[J]. Journal of Power Sources, 2004, 136(2): 296-302. |
28 | Schroeder G, Gierczyk B, Waszak D, et al. Vinyl tris-2-methoxyethoxy silane—a new class film-forming electrolyte components for Li-ion cells with graphite anodes[J]. Electrochemistry Communications, 2006, 8(4): 523-527. |
29 | Tasaki K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2920-2933. |
30 | Morigaki K I. In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions[J]. Journal of Power Sources, 2002, 103(2): 253-264. |
31 | Edström K, Andersson A M, Bishop A, et al. Carbon electrode morphology and thermal stability of the passivation layer[J]. Journal of Power Sources, 2001, 97/98: 87-91. |
32 | Wagner R, Brox S, Kasnatscheew J, et al. Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochemistry Communications, 2014, 40: 80-83. |
33 | Chrétien F, Jones J, Damas C, et al. Impact of solid electrolyte interphase lithium salts on cycling ability of Li-ion battery: beneficial effect of glymes additives[J]. Journal of Power Sources, 2014, 248: 969-977. |
34 | Soto F A, Ma Y G, de la Hoz J M M, et al. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries[J]. Chemistry of Materials, 2015, 27(23): 7990-8000. |
35 | Tran T D, Feikert J H, Pekala R W, et al. Rate effect on lithium-ion graphite electrode performance[J]. Journal of Applied Electrochemistry, 1996, 26(11): 1161-1167. |
36 | Bläubaum L, Röder F, Nowak C, et al. Impact of particle size distribution on performance of lithium-ion batteries[J]. ChemElectroChem, 2020, 7(23): 4755-4766. |
37 | Lu L L, Lu Y Y, Zhu Z X, et al. Extremely fast-charging lithium ion battery enabled by dual-gradient structure design[J]. Science Advances, 2022, 8(17): eabm6624. |
38 | 许于, 陈怡沁, 周静红, 等. LiFePO4锂离子电池的数值模拟: 正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830. |
Xu Y, Chen Y Q, Zhou J H, et al. Numerical simulation of lithium-ion battery with LiFePO4 as cathode material: effect of particle size[J]. CIESC Journal, 2020, 71(2): 821-830. | |
39 | Ekström H, Lindbergh G. A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell[J]. Journal of the Electrochemical Society, 2015, 162(6): A1003-A1007. |
40 | Santhanagopalan S, Guo Q Z, Ramadass P, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2): 620-628. |
41 | Safari M, Delacourt C. Modeling of a commercial graphite/LiFePO4 cell[J]. Journal of the Electrochemical Society, 2011, 158(5): A562. |
42 | Mei W X, Chen H D, Sun J H, et al. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustainable Energy & Fuels, 2019, 3(1): 148-165. |
43 | Chen Z Y, Liu Y, Zhang Y Z, et al. Ultrafine layered graphite as an anode material for lithium ion batteries[J]. Materials Letters, 2018, 229: 134-137. |
44 | Utsunomiya T, Hatozaki O, Yoshimoto N, et al. Influence of particle size on the self-discharge behavior of graphite electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(20): 8675-8682. |
45 | 陈继涛, 周恒辉, 常文保, 等. 粒度对石墨负极材料嵌锂性能的影响[J]. 物理化学学报, 2003, 19(3): 278-282. |
Chen J T, Zhou H H, Chang W B, et al. Effect of particle size on lithium intercalation performance of graphite anode[J]. Acta Physico-Chimica Sinica, 2003, 19(3): 278-282. | |
46 | Buqa H, Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A474-A481. |
47 | 吕岩, 叶丹峥, 孙晓宾, 等. 石墨的形貌及粒径对锂离子电池性能的影响[J]. 电池, 2014, 44(3): 171-173. |
Lv Y, Ye D Z, Sun X B, et al. Effects of shape and particle size of graphite on the performance of Li-ion battery[J]. Battery Bimonthly, 2014, 44(3): 171-173. | |
48 | Zhang Z W, Li Y Z, Xu R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
49 | 曹景阳. 锂浆料电池石墨电极SEI膜形成规律与建模仿真[D]. 北京: 中国科学院大学, 2020. |
Cao J Y. Formation law and modeling simulation of SEI film on graphite electrode of lithium slurry battery[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
50 | 李瑞杰, 王磊, 黄海强, 等. 低孔隙率的全固态电池电极极片及其制备方法和应用: 111933890B[P]. 2021-10-26. |
Li R J, Wang L, Huang H Q, et al. Low-porosity all-solid-state battery electrode plate as well as preparation method and application thereof: 111933890B[P]. 2021-10-26. | |
51 | 李波, 高明, 马欢, 等. 一种高压实密度、高倍率性能石墨负极材料及其制备方法: 114873589A[P]. 2022-08-09. |
Li B, Gao M, Ma H, et al. A graphite anode material with high-compaction density and high-rate performance as well as preparation method thereof: 114873589A[P]. 2022-08-09. | |
52 | 万台鹏. 一种高容量高压实密度锂离子电池石墨负极材料的制备方法: 104108699A[P]. 2014-10-22. |
Wan T P. A preparation method of graphite anode material of lithium ion battery with high capacity and high-compaction density: 104108699A[P]. 2014-10-22. |
[1] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[12] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||