CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 593-603.DOI: 10.11949/0438-1157.20231081
• Process system engineering • Previous Articles Next Articles
Xi MENG1,2,3(), Yan WANG1,2,3, Zijian SUN1,2,3, Junfei QIAO1,2,3
Received:
2023-10-19
Revised:
2024-01-23
Online:
2024-04-10
Published:
2024-02-25
Contact:
Xi MENG
蒙西1,2,3(), 王岩1,2,3, 孙子健1,2,3, 乔俊飞1,2,3
通讯作者:
蒙西
作者简介:
蒙西(1988—),女,博士,副教授,mengxi@bjut.edu.cn
基金资助:
CLC Number:
Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network[J]. CIESC Journal, 2024, 75(2): 593-603.
蒙西, 王岩, 孙子健, 乔俊飞. 基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测[J]. 化工学报, 2024, 75(2): 593-603.
模型 | 训练 时间/s | 测试 RMSE | 测试 MAPE/% | 测试R2 | 隐含层 神经元数 |
---|---|---|---|---|---|
LSTM | 16.0121 | 0.0137 | 1.6161 | 0.9622 | 24 |
LSSVM | 1.2860 | 0.0141 | 1.4045 | 0.9764 | 27 |
SOFNN | 10.9740 | 0.0106 | 0.9360 | 0.9977 | 20 |
BIMNN | 7.6788 | 0.0059 | 0.4516 | 0.9982 | 5+7+6 |
AMNN | 7.4221 | 0.0040 | 0.3287 | 0.9996 | 6+7+4 |
Table 1 Prediction results of different models on Mackey-Glass problem
模型 | 训练 时间/s | 测试 RMSE | 测试 MAPE/% | 测试R2 | 隐含层 神经元数 |
---|---|---|---|---|---|
LSTM | 16.0121 | 0.0137 | 1.6161 | 0.9622 | 24 |
LSSVM | 1.2860 | 0.0141 | 1.4045 | 0.9764 | 27 |
SOFNN | 10.9740 | 0.0106 | 0.9360 | 0.9977 | 20 |
BIMNN | 7.6788 | 0.0059 | 0.4516 | 0.9982 | 5+7+6 |
AMNN | 7.4221 | 0.0040 | 0.3287 | 0.9996 | 6+7+4 |
序号 | 变量 | 序号 | 变量 |
---|---|---|---|
1 | 焚烧炉炉膛上部温度A | 6 | 二次风机入口流量 |
2 | 焚烧炉炉膛上部温度B | 7 | 一次风空预器后温度 |
3 | 焚烧炉炉膛出口烟温A | 8 | 二次风空预器后温度 |
4 | 焚烧炉炉膛出口烟温B | 9 | 炉排速度 |
5 | 一次风机入口流量 | 10 | 烟气含氧量 |
Table 2 Candidate input variable
序号 | 变量 | 序号 | 变量 |
---|---|---|---|
1 | 焚烧炉炉膛上部温度A | 6 | 二次风机入口流量 |
2 | 焚烧炉炉膛上部温度B | 7 | 一次风空预器后温度 |
3 | 焚烧炉炉膛出口烟温A | 8 | 二次风空预器后温度 |
4 | 焚烧炉炉膛出口烟温B | 9 | 炉排速度 |
5 | 一次风机入口流量 | 10 | 烟气含氧量 |
模型 | 训练 时间/s | 测试 RMSE/(mg/m3) | 测试 MAPE/% | 测试 R2 | 隐含层 神经元数 |
---|---|---|---|---|---|
LSTM | 23.4584 | 12.1949 | 7.0386 | 0.9254 | 24 |
LSSVM | 4.1806 | 13.4505 | 8.1815 | 0.9222 | 27 |
SOFNN | 21.5349 | 11.7149 | 7.1477 | 0.9288 | 18 |
BIMNN | 7.0600 | 10.8048 | 6.9831 | 0.9328 | 4+10+5 |
AMNN | 7.8990 | 9.5831 | 5.7401 | 0.9425 | 6+3+6 |
Table 3 Prediction results of different models on NO x concentration
模型 | 训练 时间/s | 测试 RMSE/(mg/m3) | 测试 MAPE/% | 测试 R2 | 隐含层 神经元数 |
---|---|---|---|---|---|
LSTM | 23.4584 | 12.1949 | 7.0386 | 0.9254 | 24 |
LSSVM | 4.1806 | 13.4505 | 8.1815 | 0.9222 | 27 |
SOFNN | 21.5349 | 11.7149 | 7.1477 | 0.9288 | 18 |
BIMNN | 7.0600 | 10.8048 | 6.9831 | 0.9328 | 4+10+5 |
AMNN | 7.8990 | 9.5831 | 5.7401 | 0.9425 | 6+3+6 |
1 | Kaza S, Yao L S, Bhada-Tata P, et al. What A Waste 2.0: A Global Snapshot of Solid Waste Management to 2050[M]. Washington: World Bank Publications, 2018. |
2 | Li Y, Zhao X G, Li Y B, et al. Waste incineration industry and development policies in China[J]. Waste Management, 2015, 46: 234-241. |
3 | Cheng H F, Hu Y A. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. |
4 | Song W, Liu X Y, Hu C C, et al. Important contributions of non-fossil fuel nitrogen oxides emissions[J]. Nature Communications, 2021, 12: 243. |
5 |
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二![]() |
Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706. | |
6 | 李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5): 1789-1796. |
Li Q, Wu Y X, Yang H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5): 1789-1796. | |
7 | 高岩, 栾涛, 彭吉伟, 等. 燃煤电厂真实烟气条件下SCR催化剂脱硝性能[J]. 化工学报, 2013, 64(7): 2611-2618. |
Gao Y, Luan T, Peng J W, et al. DeNO x performance of SCR catalyst for exhaust gas from coal-fired power plant[J]. CIESC Journal, 2013, 64(7): 2611-2618. | |
8 | Liu G F, Zhang Y, Shen D K, et al. Anticipatory NH3 injection control for SCR system based on the prediction of the inlet NO x concentration[J]. Journal of the Energy Institute, 2021, 94: 167-175. |
9 | 饶德备, 谭鹏, 李壮扬, 等. 燃煤电站SCR脱硝系统机理建模[J]. 热力发电, 2019, 48(8): 36-41. |
Rao D B, Tan P, Li Z Y, et al. Research on mechanism modeling of SCR denitrification system in coal-fired power plants[J]. Thermal Power Generation, 2019, 48(8): 36-41. | |
10 | 姚楚, 龙东腾, 吕游, 等. 火电厂SCR脱硝系统机理建模与控制研究[J]. 热能动力工程, 2018, 33(5): 78-84. |
Yao C, Long D T, Lyu Y, et al. Study on mechanism modelling and control of SCR denitration system in thermal power plant[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(5): 78-84. | |
11 | Chui E H, Gao H N. Estimation of NO x emissions from coal-fired utility boilers[J]. Fuel, 2010, 89(10): 2977-2984. |
12 | Díez L I, Cortés C, Pallarés J. Numerical investigation of NO x emissions from a tangentially-fired utility boiler under conventional and overfire air operation[J]. Fuel, 2008, 87(7): 1259-1269. |
13 | Hill S C, Douglas Smoot L. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 417-458. |
14 | Meng X, Tang J, Qiao J F. NO x emissions prediction with a brain-inspired modular neural network in municipal solid waste incineration processes[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4622-4631. |
15 | 孙子健, 汤健, 乔俊飞. 联合样本输出与特征空间的半监督概念漂移检测法及其应用[J]. 自动化学报, 2022, 48(5): 1259-1272. |
Sun Z J, Tang J, Qiao J F. Semi-supervised concept drift detection method by combining sample output space and feature space with its application[J]. Acta Automatica Sinica, 2022, 48(5): 1259-1272. | |
16 | Qiao J F, Zhou J L, Meng X. A multitask learning model for the prediction of NO x emissions in municipal solid waste incineration processes[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 2502214. |
17 | 刘吉臻, 秦天牧, 杨婷婷, 等. 基于自适应多尺度核偏最小二乘的SCR烟气脱硝系统建模[J]. 中国电机工程学报, 2015, 35(23): 6083-6088. |
Liu J Z, Qin T M, Yang T T, et al. SCR denitration system modeling based on self-adaptive multi-scale kernel partial least squares[J]. Proceedings of the CSEE, 2015, 35(23): 6083-6088. | |
18 | Tuttle J F, Blackburn L D, Powell K M. On-line classification of coal combustion quality using nonlinear SVM for improved neural network NO x emission rate prediction[J]. Computers & Chemical Engineering, 2020, 141: 106990. |
19 | Zhai Y J, Ding X D, Jin X Z, et al. Adaptive LSSVM based iterative prediction method for NO x concentration prediction in coal-fired power plant considering system delay[J]. Applied Soft Computing, 2020, 89: 106070. |
20 | Yang T T, Ma K F, Lv Y, et al. Real-time dynamic prediction model of NO x emission of coal-fired boilers under variable load conditions[J]. Fuel, 2020, 274: 117811. |
21 | Yuan Z W, Meng L, Gu X B, et al. Prediction of NO x emissions for coal-fired power plants with stacked-generalization ensemble method[J]. Fuel, 2021, 289: 119748. |
22 | Xu Q Q, Hao X C, Shi X, et al. Control of denitration system in cement calcination process: a novel method of deep neural network model predictive control[J]. Journal of Cleaner Production, 2022, 332: 129970. |
23 | Xie P R, Gao M M, Zhang H F, et al. Dynamic modeling for NO x emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network[J]. Energy, 2020, 190: 116482. |
24 | Kang J J, Niu Y G, Hu B, et al. Dynamic modeling of SCR denitration systems in coal-fired power plants based on a bi-directional long short-term memory method[J]. Process Safety and Environmental Protection, 2021, 148: 867-878. |
25 | Meunier D, Lambiotte R, Bullmore E T. Modular and hierarchically modular organization of brain networks[J]. Frontiers in Neuroscience, 2010, 4: 200. |
26 | Bertolero M A, Yeo B T, D'Esposito M. The modular and integrative functional architecture of the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): E6798-E6807. |
27 | Soydaner D. Attention mechanism in neural networks: where it comes and where it goes[J]. Neural Computing and Applications, 2022, 34(16): 13371-13385. |
28 | Wang P Z. Pattern recognition with fuzzy objective function algorithms[J]. SIAM Review, 1983, 25(3): 442. |
29 | 乔俊飞, 张力, 李文静. 基于尖峰自组织模糊神经网络的需水量预测[J]. 控制与决策, 2018, 33(12): 2197-2202. |
Qiao J F, Zhang L, Li W J. Prediction of water demand based on spiking self-organizing fuzzy neural network[J]. Control and Decision, 2018, 33(12): 2197-2202. | |
30 | Tang J J, Liu F, Zou Y J, et al. An improved fuzzy neural network for traffic speed prediction considering periodic characteristic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2340-2350. |
31 | Zhou H B, Zhang Y, Duan W P, et al. Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme[J]. Applied Soft Computing, 2020, 95: 106516. |
32 | 张伟, 乔俊飞, 李凡军. 溶解氧浓度的直接自适应动态神经网络控制方法[J]. 控制理论与应用, 2015, 32(1): 115-121. |
Zhang W, Qiao J F, Li F J. Direct adaptive dynamic neural network control for dissolved oxygen concentration[J]. Control Theory & Applications, 2015, 32(1): 115-121. | |
33 | Xie T T, Yu H, Hewlett J, et al. Fast and efficient second-order method for training radial basis function networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4): 609-619. |
34 | Niu Z Y, Zhong G Q, Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. |
35 | Wang Y Q, Huang M L, Zhu X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016: 606-615. |
36 | 蒋珂, 蒋朝辉, 谢永芳, 等. 基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法[J]. 自动化学报, 2023, 49(5): 949-963. |
Jiang K, Jiang Z H, Xie Y F, et al. Online prediction method for silicon content of molten iron in blast furnace based on dynamic attention deep transfer network[J]. Acta Automatica Sinica, 2023, 49(5): 949-963. | |
37 | Mao Z X, Demirgian J, Mathew A, et al. Use of Fourier transform infrared spectrometry as a continuous emission monitor[J]. Waste Management, 1995, 15(8): 567-577. |
38 | Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||