CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 584-592.DOI: 10.11949/0438-1157.20231175
• Separation engineering • Previous Articles Next Articles
Mingqing TAO(), Minghao MU, Teng CHENG(), Bo WANG()
Received:
2023-11-14
Revised:
2024-02-07
Online:
2024-04-10
Published:
2024-02-25
Contact:
Teng CHENG, Bo WANG
通讯作者:
程滕,王博
作者简介:
陶明清(1999—),男,硕士研究生,taomq21@lzu.edu.cn
基金资助:
CLC Number:
Mingqing TAO, Minghao MU, Teng CHENG, Bo WANG. Research on spray coupled cooling to enhance the removal of fine particles by cyclone separator[J]. CIESC Journal, 2024, 75(2): 584-592.
陶明清, 慕明昊, 程滕, 王博. 喷雾耦合降温强化旋风分离器脱除细颗粒物的研究[J]. 化工学报, 2024, 75(2): 584-592.
Add to citation manager EndNote|Ris|BibTeX
工艺阶段 | 入口颗粒物浓度/ (mg/m³) | 出口颗粒物浓度/(mg/m³) | 脱除效率/% | 工艺阶段 | 入口颗粒物浓度/ (mg/m³) | 出口颗粒物浓度/(mg/m³) | 脱除效率/% |
---|---|---|---|---|---|---|---|
化料 | 1408.63 | 9.95 | 99.29 | 吹炼/精炼 | 1467.61 | 9.32 | 99.36 |
1558.62 | 7.62 | 99.51 | 947.95 | 7.95 | 99.16 | ||
2266.67 | 22.22 | 99.02 | 1339.80 | 12.17 | 99.09 | ||
1900.00 | 15.38 | 99.19 | 890.42 | 8.18 | 99.08 | ||
2193.10 | 25.62 | 98.83 | 1451.88 | 14.29 | 99.02 | ||
1868.76 | 8.84 | 99.53 | 1272.59 | 8.22 | 99.35 | ||
1649.43 | 6.88 | 99.58 | 1590.34 | 10.82 | 99.32 | ||
1676.96 | 8.00 | 99.52 | 1454.13 | 12.61 | 99.13 | ||
1014.73 | 7.79 | 99.23 | 1507.92 | 10.71 | 99.29 | ||
1208.59 | 14.73 | 98.78 | 1637.71 | 6.18 | 99.62 | ||
1077.55 | 9.02 | 99.16 | 973.44 | 13.62 | 98.60 | ||
1306.47 | 9.26 | 99.29 | 1523.49 | 12.01 | 99.21 | ||
1669.59 | 14.78 | 99.11 | 944.43 | 6.51 | 99.31 | ||
1076.78 | 12.81 | 98.81 | 1278.47 | 11.45 | 99.10 | ||
1700.62 | 7.32 | 99.57 | 1239.11 | 6.14 | 99.50 | ||
1899.58 | 6.14 | 99.68 | 815.37 | 8.40 | 98.97 | ||
Table 1 Operation monitoring data of spray-coupled cooling enhanced cyclone separation system
工艺阶段 | 入口颗粒物浓度/ (mg/m³) | 出口颗粒物浓度/(mg/m³) | 脱除效率/% | 工艺阶段 | 入口颗粒物浓度/ (mg/m³) | 出口颗粒物浓度/(mg/m³) | 脱除效率/% |
---|---|---|---|---|---|---|---|
化料 | 1408.63 | 9.95 | 99.29 | 吹炼/精炼 | 1467.61 | 9.32 | 99.36 |
1558.62 | 7.62 | 99.51 | 947.95 | 7.95 | 99.16 | ||
2266.67 | 22.22 | 99.02 | 1339.80 | 12.17 | 99.09 | ||
1900.00 | 15.38 | 99.19 | 890.42 | 8.18 | 99.08 | ||
2193.10 | 25.62 | 98.83 | 1451.88 | 14.29 | 99.02 | ||
1868.76 | 8.84 | 99.53 | 1272.59 | 8.22 | 99.35 | ||
1649.43 | 6.88 | 99.58 | 1590.34 | 10.82 | 99.32 | ||
1676.96 | 8.00 | 99.52 | 1454.13 | 12.61 | 99.13 | ||
1014.73 | 7.79 | 99.23 | 1507.92 | 10.71 | 99.29 | ||
1208.59 | 14.73 | 98.78 | 1637.71 | 6.18 | 99.62 | ||
1077.55 | 9.02 | 99.16 | 973.44 | 13.62 | 98.60 | ||
1306.47 | 9.26 | 99.29 | 1523.49 | 12.01 | 99.21 | ||
1669.59 | 14.78 | 99.11 | 944.43 | 6.51 | 99.31 | ||
1076.78 | 12.81 | 98.81 | 1278.47 | 11.45 | 99.10 | ||
1700.62 | 7.32 | 99.57 | 1239.11 | 6.14 | 99.50 | ||
1899.58 | 6.14 | 99.68 | 815.37 | 8.40 | 98.97 | ||
1 | 王莉娜, 杨燕萍, 杨丽丽, 等. 兰州市秋季PM2.5污染特征及来源解析研究[J]. 绿色科技, 2020(14): 80-83, 96. |
Wang L N, Yang Y P, Yang L L, et al. Study on the characteristics and source apportionment of PM2.5 autumn pollution in Lanzhou[J]. Journal of Green Science and Technology, 2020(14): 80-83, 96. | |
2 | Seinfeld J H. Atmospheric Chemistry and Physics of Air Pollution[M]. New York: Wiley, 1986 |
3 | 任战. 武汉市环境细颗粒物短期暴露与呼吸系统和心血管系统疾病住院风险研究[D]. 武汉: 武汉大学, 2021. |
Ren Z. Short-term effect of ambient fine particulate (PM2.5) on hospital admissions for respiratory and cardiovascular diseases in Wuhan[D].Wuhan: Wuhan University, 2021. | |
4 | Groma V, Alföldy B, Börcsök E, et al. Sources and health effects of fine and ultrafine aerosol particles in an urban environment[J]. Atmospheric Pollution Research, 2022, 13(2): 101302. |
5 | Teng C Z, Li J. Performance of reduction on particle emission by combining the charged water drop atomization and electric field in wet electrostatic precipitator[J]. Process Safety and Environmental Protection, 2021, 155: 543-554. |
6 | 李秀芬, 冯伟杰, 康奕菁, 等. 气动乳化除尘脱硫+湿式静电除尘器组合处理器净化污泥焙烧烟气的应用[J]. 当代化工研究, 2021(22): 126-128. |
Li X F, Feng W J, Kang Y J, et al. Application of pneumatic emulsion dust removal and desulfurization + wet electrostatic precipitator combined processor to purify sludge roasting flue gas[J]. Modern Chemical Research, 2021(22): 126-128. | |
7 | 卓俭进. 铜冶炼废气超低排放治理[J]. 黄金, 2021, 42(7): 86-88. |
Zhuo J J. Ultra-low emission treatment of copper smelting flue gas[J]. Gold, 2021, 42(7): 86-88. | |
8 | Chen L J, Ma H, Sun Z J, et al. Effect of inlet periodic velocity on the performance of standard cyclone separators[J]. Powder Technology, 2022, 402: 117347. |
9 | Karagoz I, Avci A, Surmen A, et al. Design and performance evaluation of a new cyclone separator[J]. Journal of Aerosol Science, 2013, 59: 57-64. |
10 | Song C M, Pei B B, Jiang M T, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294: 437-448. |
11 | Wang B, Liu H Y, Zhou C L, et al. Enhancing the collection efficiency of a gas cyclone with atomization and electrostatic charging[J]. Powder Technology, 2020, 364: 562-571. |
12 | Yang S L, Wang S, Luo K, et al. Numerical investigation of the cluster property and flux distribution in three-dimensional full-loop circulating fluidized bed with multiple parallel cyclones[J]. Powder Technology, 2019, 342: 253-266. |
13 | Guo Y Q, Zhang J Y, Zhao Y C, et al. Chemical agglomeration of fine particles in coal combustion flue gas: experimental evaluation[J]. Fuel, 2017, 203: 557-569. |
14 | Zhang X Y, Gan Z W, Li Y Z. Collection of particles on cold surfaces: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(38): 16493-16506. |
15 | Heidenreich S, Schabel S, Sachweh B, et al. Submicron particle separation in cyclones based on droplet growth by heterogeneous condensation[J]. Journal of Aerosol Science, 1995, 26: S873-S874. |
16 | Fu P B, Jiang X, Ma L, et al. Enhancement of PM2.5 cyclone separation by droplet capture and particle sorting[J]. Environmental Science & Technology, 2018, 52(20): 11652-11659. |
17 | Cheng Z L, Jiang L, Cai Y W, et al. Removal model of fine particles from the flue gas of the coal-fired power plant in a water-sparged aerocyclone[J]. The Canadian Journal of Chemical Engineering, 2019, 97(12): 3148-3155. |
18 | Wu H, Yang L J, Yan J P, et al. Improving the removal of fine particles by heterogeneous condensation during WFGD processes[J]. Fuel Processing Technology, 2016, 145: 116-122. |
19 | Tan H Z, Wang Y B, Cao R J, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J]. Applied Thermal Engineering, 2018, 130: 1208-1214. |
20 | Krames J, Büttner H. The cyclone scrubber—a high efficiency wet separator[J]. Chemical Engineering & Technology, 1994, 17(2): 73-80. |
21 | Yu Y, Xu C W, Fu C. Effects of coal-fired flue gas composition on condensational growth by water vapor for fine SiO2 particles[J]. Process Safety and Environmental Protection, 2021, 158(2): 34-41. |
22 | Ray M B, Hoffmann A C, Postma R S. Performance of different analytical methods in evaluating grade efficiency of centrifugal separators[J]. Journal of Aerosol Science, 2000, 31(5): 563-581. |
23 | 周璐璐, 张军, 徐俊超, 等. 典型煤灰成分细颗粒物在过饱和水汽环境中的长大特性[J]. 燃料化学学报, 2015, 43(6): 754-760. |
Zhou L L, Zhang J, Xu J C, et al. Growth of fine particulates of typical coal ash components in supersaturated water environment[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 754-760. | |
24 | Cao R J, Tan H Z, Xiong Y Y, et al. Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator[J]. Journal of Cleaner Production, 2017, 161: 1459-1465. |
25 | Chen C C, Tao C J, Shu H J. Heterogeneous nucleation of n-butanol vapor on submicrometer charged and neutral particles of lactose and monosodium glutamate[J]. Journal of Colloid and Interface Science, 2000, 224(1): 11-22. |
26 | Gan Z W, Li Y Z, Zhang X Y, et al. Mechanism of stefan flow in the collection of particles on evaporating/condensing surfaces: a review[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4766-4776. |
27 | Wang B, Yu A B. Computational investigation of the mechanisms of particle separation and “fish-hook” phenomenon in hydrocyclones[J]. AIChE Journal, 2010, 56(7): 1703-1715. |
28 | Podgórski A, Bałazy A, Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical Engineering Science, 2006, 61(20): 6804-6815. |
29 | Fletcher N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. |
30 | Wang X, Zhang L, Moran M D. Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain[J]. Atmospheric Chemistry and Physics, 2010, 10(12): 5685-5705. |
31 | Park S H, Jung C H, Jung K R, et al. Wet scrubbing of polydisperse aerosols by freely falling droplets[J]. Journal of Aerosol Science, 2005, 36(12): 1444-1458. |
[1] | Xiaoyang LI, Dong LI, Minglei TAO, Zhifu ZHOU, Lingyi ZHANG, Lizheng SU, Tianning ZHANG, Zhi LI, Bin CHEN. Experimental study on heat transfer characteristics of multi nozzle spray cooling surface [J]. CIESC Journal, 2024, 75(1): 231-241. |
[2] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[3] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[4] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[5] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[6] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[7] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[8] | Yiping FAN, Chunxi LU. Research progress on dedust scheme of coupling centrifugal force field with moving bed filtration [J]. CIESC Journal, 2023, 74(1): 157-169. |
[9] | Hanlin YAO, Zhong XIN. Research on flow behavior of liquid-phase precipitation reaction in the tubular microchannel reactor [J]. CIESC Journal, 2022, 73(8): 3518-3528. |
[10] | Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension [J]. CIESC Journal, 2022, 73(7): 2971-2981. |
[11] | Jun LI, Shihua LI, Zhigao SUN, Shibo SONG. Study on effect of ultrasound for immersed spray cooling in non-boiling regime [J]. CIESC Journal, 2022, 73(4): 1566-1574. |
[12] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[13] | Haifeng ZHENG, Shengzhe JIA, Songcheng WANG, Rui HAN, Dandan HAN, Zhenguo GAO, Junbo GONG. Advances in crystallization of ultrafine crystals [J]. CIESC Journal, 2022, 73(10): 4285-4297. |
[14] | Hao ZHOU,Qiwei WU,Fangzheng CHENG. Preparation of La0.8Sr0.2Mn1-xCuxO3 by flame spray synthesis method and catalytic performance for CO oxidation [J]. CIESC Journal, 2021, 72(10): 5159-5171. |
[15] | Bin WANG, Cong SHEN, Jiayin WANG, Jingxuan YANG, Xiaogang HAO. Analysis on concentration distribution and trajectory of fine particles in cyclone separator [J]. CIESC Journal, 2020, 71(S2): 201-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||