CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1270-1283.DOI: 10.11949/0438-1157.20231274
• Reviews and monographs • Previous Articles Next Articles
Xi WU1(), Bo SUN1, Yindong LIU2, Chuanlei QI2, Kaiyi CHEN1, Luhai WANG2, Chong XU1(), Yongfeng LI1()
Received:
2023-12-04
Revised:
2024-02-15
Online:
2024-06-06
Published:
2024-04-25
Contact:
Chong XU, Yongfeng LI
吴希1(), 孙博1, 刘银东2, 齐传磊2, 陈凯毅1, 王路海2, 许崇1(), 李永峰1()
通讯作者:
许崇,李永峰
作者简介:
吴希(1992—),女,博士研究生,wuxicup@163.com
基金资助:
CLC Number:
Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries[J]. CIESC Journal, 2024, 75(4): 1270-1283.
吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 XRD patterns (a), microstructure diagram (b), and comparisons of the capacity-voltage profiles for sodium storage (c) of typical carbon materials[17]
Fig.2 Deconvoluted O 1s spectra (a), charge/discharge curves in SIBs (b), and schematic illustration of the synthesis process (c) for carbon materials derived from unoxidized and oxidized petroleum asphalt[29]; The mechanism of oxygen functionalities on the evolution of carbon structure during carbonization (d) [32]
Fig.3 Schematic diagram of the molecular structure of coal tar pitch modified by benzene glycol (a)[39]; Images of pitch modified by Mg(NO3)2 before and after carbonization, and comparisons of microstructure and charge/discharge curves for Na-storage (b)[42]; Schematic illustration for the preparation of hard carbon derived from petroleum asphalt modified by zinc gluconate (c)[43]
Fig.4 Schematic illustration for the preparation of mesoporous soft carbon by using calcium carbonate as a template, and its CV curves and charge-discharge profiles (a)[47]; Schematic illustration of the fabrication process of 3D porous amorphous carbon, and its charge-discharge profiles and rate capability (b)[54]
Fig.5 DFT calculations of the coordinated energy of different nitrogen types with Na+ (a)[58]; Different configurations of P-doping and results of interlayer distances and the related stable adsorption energy for Na+ (b)[59]
Fig.6 Schematic diagram of the synthesis procedure for the carbon composite anode by using petroleum asphalt and phenolic resin (a)[71]; Illustration for the preparation of the carbon composite material by using petroleum asphalt and g-C3N4 and the corresponding curves of electrochemical performance for sodium storage (b)[74]
1 | Sun Y K. Future of electrochemical energy storage[J]. ACS Energy Letters, 2017, 2(3): 716. |
2 | Feng Y, Zhou L M, Ma H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy & Environmental Science, 2022, 15(5): 1711-1759. |
3 | Sang J W, Tang B, Pan K C, et al. Current status and enhancement strategies for all-solid-state lithium batteries[J]. Accounts of Materials Research, 2023, 4(6): 472-483. |
4 | Ma M, Chong S K, Yao K, et al. Advanced anode materials for potassium batteries: sorting out opportunities and challenges by potassium storage mechanisms[J]. Matter, 2023, 6(10): 3220-3273. |
5 | Wang J R, Xi L, Peng C X, et al. Recent progress in hard carbon anodes for sodium-ion batteries[J]. Advanced Engineering Materials, 2024, 26(8): 2302063. |
6 | Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
7 | Zhao Y, Kang Y Q, Wozny J, et al. Recycling of sodium-ion batteries[J]. Nature Reviews Materials, 2023, 8: 623-634. |
8 | Sada K, Darga J, Manthiram A. Challenges and prospects of sodium-ion and potassium-ion batteries for mass production[J]. Advanced Energy Materials, 2023, 13(39): 2302321. |
9 | Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688. |
10 | Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
11 | Yang X M, Rogach A L. Anodes and sodium-free cathodes in sodium ion batteries[J]. Advanced Energy Materials, 2020, 10(22): 2000288. |
12 | Fang L B, Bahlawane N, Sun W P, et al. Conversion-alloying anode materials for sodium ion batteries[J]. Small, 2021, 17(37): e2101137. |
13 | Wang K F, Sun F, Wang H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials, 2022, 32(34): 2203725. |
14 | Guo Z Y, Xu Z, Xie F, et al. Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries[J]. Advanced Materials, 2023, 35(42): e2304091. |
15 | Yuan M, Cao B, Liu H, et al. Sodium storage mechanism of nongraphitic carbons: a general model and the function of accessible closed pores[J]. Chemistry of Materials, 2022, 34(7): 3489-3500. |
16 | Tan S C, Yang H, Zhang Z, et al. The progress of hard carbon as an anode material in sodium-ion batteries[J]. Molecules, 2023, 28(7): 3134. |
17 | Saurel D, Orayech B, Xiao B W, et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): 1703268. |
18 | Hu H Y, Xiao Y, Ling W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery[J]. Energy Technology, 2021, 9(1): 2000730. |
19 | Kamiyama A, Kubota K, Nakano T, et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(1): 135-140. |
20 | Jiang M C, Sun N, Ali Soomro R, et al. The recent progress of pitch-based carbon anodes in sodium-ion batteries[J]. Journal of Energy Chemistry, 2021, 55(4): 34-47. |
21 | Zhang Y, Fang H Q, Guan L, et al. Effect of asphalt component distribution characteristics in layered porous carbon on performance of supercapacitors[J]. Journal of Power Sources, 2024, 593: 233966. |
22 | Song X Y, Jiang R Y, Zhang L. In-situ growth of CNTs-porous carbon from asphalt with superior double-layer capacitive performance[J]. Applied Surface Science, 2022, 583: 152549. |
23 | 宁汇, 赵青山, 张浩然, 等. 石油沥青基碳材料在电化学储能中的应用[J]. 中国科学: 化学, 2018, 48(4): 329-341. |
Ning H, Zhao Q S, Zhang H R, et al. Application of petroleum asphalt-based carbon materials in electrochemical energy storage[J]. Scientia Sinica (Chimica), 2018, 48(4): 329-341. | |
24 | Thomas P, Ghanbaja J, Billaud D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte[J]. Electrochimica Acta, 1999, 45(3): 423-430. |
25 | Du W S, Sun C, Sun Q. The recent progress of pitch nanoengineering to obtain the carbon anode for high-performance sodium ion batteries[J]. Materials, 2023, 16(13): 4871. |
26 | 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3): 227-233. |
Dong W, Yang S B, Shen D, et al. Performance of pitch and glucose pyrocarbons for reversible sodium storage[J]. New Carbon Materials, 2017, 32(3): 227-233. | |
27 | Song L J, Liu S S, Yu B J, et al. Anode performance of mesocarbon microbeads for sodium-ion batteries[J]. Carbon, 2015, 95: 972-977. |
28 | Yuan C, Zhu Y Y, Zhao P Y, et al. Enhanced electrochemical performance of mesocarbon-microbeads-based anodes through air oxidation for sodium-ion batteries[J]. ChemElectroChem, 2017, 4(10): 2583-2592. |
29 | Lu Y X, Zhao C L, Qi X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
30 | Guo H Y, Li Y Y, Wang C L, et al. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. New Carbon Materials, 2021, 36(6): 1073-1078. |
31 | Daher N, Huo D, Davoisne C, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510. |
32 | Xu R, Yi Z L, Song M X, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
33 | Li F Y, Tao H C, Yang X L. Adjusting the state of pitch anode for effective oxidation with suppressed graphitization and enhanced Na storage performances[J]. Ionics, 2022, 28(11): 5141-5151. |
34 | Liu X, Zhu Y Y, Liu N, et al. Catalytic synthesis of hard/soft carbon hybrids with heteroatom doping for enhanced sodium storage[J]. ChemistrySelect, 2019, 4(12): 3551-3558. |
35 | Kim M I, Bai B C. Effect of nitric acid treatment on the pitch properties and preparation of activated carbon[J]. Carbon Letters, 2022, 32(1): 99-107. |
36 | Wang J, Yan L, Liu B H, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J]. Chinese Chemical Letters, 2023, 34(4): 107526. |
37 | 陈涛, 吴吉昊, 车晓刚, 等. 改性沥青基硬炭材料的可控制备及其储钠性能[J]. 洁净煤技术, 2023, 29(2): 92-98. |
Chen T, Wu J H, Che X G, et al. Fabrication of modified pitch-based hard carbon materials for high-performance sodium-ion storage[J]. Clean Coal Technology, 2023, 29(2): 92-98. | |
38 | Chen H, Sun N, Wang Y X, et al. One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. |
39 | Wang Y W, Xiao N, Wang Z Y, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
40 | 郭永强, 李晨, 黄鲜安, 等. 钠离子电池用负极材料煤沥青基硬炭制备[J]. 炭素技术, 2021, 40(2): 36-41. |
Guo Y Q, Li C, Huang X A, et al. Preparation of hard carbon from coal tar pitch for sodium ion battery[J]. Carbon Techniques, 2021, 40(2): 36-41. | |
41 | Li Y M, Hu Y S, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(1): 96-104. |
42 | Qi Y R, Lu Y X, Liu L L, et al. Retarding graphitization of soft carbon precursor: from fusion-state to solid-state carbonization[J]. Energy Storage Materials, 2020, 26: 577-584. |
43 | He H N, He J, Yu H B, et al. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage[J]. Advanced Energy Materials, 2023, 13(16): 2300357. |
44 | Zhang S H, Sun N, Li X, et al. Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage[J]. Energy Storage Materials, 2024, 66: 103183. |
45 | Igarashi D, Tanaka Y, Kubota K, et al. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries[J]. Advanced Energy Materials, 2023, 13(47): 2302647. |
46 | Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345. |
47 | Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478. |
48 | Xie M M, Zhu X B, Li D Q, et al. Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage[J]. Journal of Power Sources, 2021, 514: 230593. |
49 | Han L, Li Z M, Yang F, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Powder Technology, 2021, 382: 541-549. |
50 | Li Z, Cao Y J, Li G Y, et al. High rate capability of S-doped ordered mesoporous carbon materials with directional arrangement of carbon layers and large d-spacing for sodium-ion battery[J]. Electrochimica Acta, 2021, 366: 137466. |
51 | Díez N, Fuertes A B, Sevilla M. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Materials, 2021, 38: 50-69. |
52 | Qiu D, Cao T F, Zhang J, et al. Precise carbon structure control by salt template for high performance sodium-ion storage[J]. Journal of Energy Chemistry, 2019, 31: 101-106. |
53 | Wang Y X, Wang Y W, Liu J L, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon, 2017, 122: 344-351. |
54 | Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
55 | Liu C, Zheng H J, Wang Y W, et al. Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 615: 485-493. |
56 | Wang G, Yu M H, Feng X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
57 | Lu B, Zhang C, Deng D R, et al. Synthesis of low-cost and high-performance dual-atom doped carbon-based materials with a simple green route as anodes for sodium-ion batteries[J]. Molecules, 2023, 28(21): 7314-7326. |
58 | Liu Z, Zhang L H, Sheng L Z, et al. Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage[J]. Advanced Energy Materials, 2018, 8(30): 1802042. |
59 | Qiao Y, Han R M, Pang Y D, et al. 3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: structure design, experimental and computational insights[J]. Journal of Materials Chemistry A, 2019, 7(18): 11400-11407. |
60 | Hong Z S, Zhen Y C, Ruan Y R, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018, 30(29): 1802035. |
61 | Hao M Y, Xiao N, Wang Y W, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology, 2018, 177: 328-335. |
62 | Sun L, Song X Y, Liu Y X, et al. Spongy-like N, S-codoped ultrathin layered carbon assembly for realizing high performance sodium-ion batteries[J]. FlatChem, 2021, 28: 100258. |
63 | Sun W, Sun Q, Lu R F, et al. Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 889: 161678. |
64 | Miao Y L, Zong J, Liu X J. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries[J]. Materials Letters, 2017, 188: 355-358. |
65 | He L, Sun Y R, Wang C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials, 2020, 35(4): 420-427. |
66 | Shao Y, Cui Y H, Wang C D, et al. Initiating fluorine chemistry in polycyclic aromatic hydrocarbon-derived carbon for new cluster-mode Na storage with superhigh capacity[J]. Small, 2023, 19(22): e2300107. |
67 | Zhao Y, Cong Y, Ning H, et al. N, P co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165691. |
68 | Xu R, Sun N, Zhou H Y, et al. Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries[J]. Battery Energy, 2023, 2(2): 20220054. |
69 | Fan C L, Zhang R S, Luo X H, et al. Epoxy phenol novolac resin: a novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries[J]. Carbon, 2023, 205: 353-364. |
70 | Li Y M, Mu L Q, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145. |
71 | Yin X P, Zhao Y F, Wang X, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): e2105568. |
72 | Wang Y W, Xiao N, Wang Z Y, et al. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries[J]. Carbon, 2018, 135: 187-194. |
73 | Yang S B, Dong W, Shen D, et al. Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency[J]. Chemical Engineering Journal, 2017, 309: 674-681. |
74 | Weng G M, Xie Y, Wang H, et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery[J]. Angewandte Chemie International Edition, 2019, 58(39): 13727-13733. |
[1] | Rui CHANG, Ruirui XING, Xuehai YAN. Green and biorecyclable materials based on peptide noncovalent chemistry [J]. CIESC Journal, 2024, 75(4): 1317-1332. |
[2] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[3] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[4] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[5] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[6] | Na PAN, Chang TIAN, Lankun HUAI, Yuyu LIU, Fenfen ZHANG, Xiaomei GAO, Wei LIU, Liangguo YAN, Yanxia ZHAO. Synthesis and application of polymerized Al-Ti based flocculant [J]. CIESC Journal, 2024, 75(3): 1009-1018. |
[7] | Jihao WU, Tao CHEN, Siyu LIU, Mengke LIU, Juan YANG. Preparation of pitch-based hard carbon by bi-functional activation strategy for sodium-ion batteries [J]. CIESC Journal, 2024, 75(3): 1019-1027. |
[8] | Haowen LI, Hao LAN, Youdan ZHENG, Yonghui SUN, Zixin YANG, Qianshi SONG, Xiaohan WANG. Pyrolysis and coking behavior of typical liquid hydrocarbon fuels in hot pipe [J]. CIESC Journal, 2024, 75(2): 626-636. |
[9] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[10] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[11] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[12] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[13] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[14] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[15] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||