CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1616-1629.DOI: 10.11949/0438-1157.20231276
• Separation engineering • Previous Articles Next Articles
Yuan MENG1,2(), Shan NI2(), Yafeng LIU2,3, Wenjie WANG2,3, Yue ZHAO2,3, Yudan ZHU1, Liangrong YANG2,3()
Received:
2023-12-04
Revised:
2024-01-12
Online:
2024-06-06
Published:
2024-04-25
Contact:
Shan NI, Liangrong YANG
孟园1,2(), 倪善2(), 刘亚锋2,3, 王文杰2,3, 赵越2,3, 朱育丹1, 杨良嵘2,3()
通讯作者:
倪善,杨良嵘
作者简介:
孟园(1998—),男,硕士研究生,mengy925@163.com
基金资助:
CLC Number:
Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium[J]. CIESC Journal, 2024, 75(4): 1616-1629.
孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629.
Add to citation manager EndNote|Ris|BibTeX
吸附剂 | 比表面积/(m2∙g-1) | 孔体积/(cm3∙g-1) |
---|---|---|
HD-CN | 52.270 | 0.1587 |
HR-CN | 120.783 | 0.5427 |
d-g-CN | 131.852 | 0.4302 |
Table 1 Specific surface area and pore volume of HD-CN, HR-CN and d-g-CN
吸附剂 | 比表面积/(m2∙g-1) | 孔体积/(cm3∙g-1) |
---|---|---|
HD-CN | 52.270 | 0.1587 |
HR-CN | 120.783 | 0.5427 |
d-g-CN | 131.852 | 0.4302 |
拟一级动力学参数 | 拟二级动力学参数 | ||||
---|---|---|---|---|---|
k1/min-1 | qe/(mg∙g-1) | R2 | k2/(g∙mg-1∙min-1) | qe/(mg∙g-1) | R2 |
0.03471 | 1332.11 | 0.993 | 0.00041 | 1427.96 | 0.999 |
Table 2 Pseudo-first-order and pseudo-second-order kinetic parameters of d-g-CN
拟一级动力学参数 | 拟二级动力学参数 | ||||
---|---|---|---|---|---|
k1/min-1 | qe/(mg∙g-1) | R2 | k2/(g∙mg-1∙min-1) | qe/(mg∙g-1) | R2 |
0.03471 | 1332.11 | 0.993 | 0.00041 | 1427.96 | 0.999 |
温度/K | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
qm/(mg∙g-1) | KL/(L∙mg-1) | R2 | KF | 1/n | R2 | |
298 | 2476.23 | 0.155 | 0.911 | 685.893 | 0.298 | 0.992 |
308 | 2709.41 | 0.184 | 0.891 | 768.055 | 0.298 | 0.991 |
318 | 3108.57 | 0.157 | 0.778 | 1030.759 | 0.253 | 0.993 |
Table 3 Fitting parameters of Langmuir model and Freundlich model
温度/K | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
qm/(mg∙g-1) | KL/(L∙mg-1) | R2 | KF | 1/n | R2 | |
298 | 2476.23 | 0.155 | 0.911 | 685.893 | 0.298 | 0.992 |
308 | 2709.41 | 0.184 | 0.891 | 768.055 | 0.298 | 0.991 |
318 | 3108.57 | 0.157 | 0.778 | 1030.759 | 0.253 | 0.993 |
吸附剂 | 实验条件 | 铀浓度/(mg∙L-1) | 最大吸附容量/(mg∙g-1) | 平衡时间/min | 文献 |
---|---|---|---|---|---|
d-g-CN | pH=6.0, m/V= 0.025 g∙L-1, T=298 K | 50 | 2476.23 | 180 | 本文 |
g-C3N4-550 | pH=5.0, m/V = 0.2 g∙L-1, T=298 K | 10 | 149.7 | 120 | [ |
AO/g-C3N4 | pH=6.8, m/V = 0.1 g∙L-1, T=298 K | 50 | 312 | 10 | [ |
pH=8.0, m/V = 0.5 g∙L-1, T=298 K | 200 | 859.66 | 480 | [ | |
g-C3N4/FeS | pH=6.0, m/V = 0.05 g∙L-1, T=303 K | 100 | 917.1 | 60 | [ |
P-CS@CN | pH=5.0, m/V = 0.1 g∙L-1, T=298 K | 10 | 416.7 | 20 | [ |
ZIF-8-CN | pH=6.0, m/V = 0.083 g∙L-1, T=298 K | 200 | 1000 | 120 | [ |
COF-TpDb-AO | pH=6.0, m/V = 0.5 g∙L-1, T=298 K | 9.25 | 408 | 30 | [ |
MCP-5 | pH=6.0, m/V = 0.02 g∙L-1, T=298 K | 20 | 950.52 | 5 | [ |
Table 4 Performance comparison between d-g-CN and reported adsorbents
吸附剂 | 实验条件 | 铀浓度/(mg∙L-1) | 最大吸附容量/(mg∙g-1) | 平衡时间/min | 文献 |
---|---|---|---|---|---|
d-g-CN | pH=6.0, m/V= 0.025 g∙L-1, T=298 K | 50 | 2476.23 | 180 | 本文 |
g-C3N4-550 | pH=5.0, m/V = 0.2 g∙L-1, T=298 K | 10 | 149.7 | 120 | [ |
AO/g-C3N4 | pH=6.8, m/V = 0.1 g∙L-1, T=298 K | 50 | 312 | 10 | [ |
pH=8.0, m/V = 0.5 g∙L-1, T=298 K | 200 | 859.66 | 480 | [ | |
g-C3N4/FeS | pH=6.0, m/V = 0.05 g∙L-1, T=303 K | 100 | 917.1 | 60 | [ |
P-CS@CN | pH=5.0, m/V = 0.1 g∙L-1, T=298 K | 10 | 416.7 | 20 | [ |
ZIF-8-CN | pH=6.0, m/V = 0.083 g∙L-1, T=298 K | 200 | 1000 | 120 | [ |
COF-TpDb-AO | pH=6.0, m/V = 0.5 g∙L-1, T=298 K | 9.25 | 408 | 30 | [ |
MCP-5 | pH=6.0, m/V = 0.02 g∙L-1, T=298 K | 20 | 950.52 | 5 | [ |
T /K | ΔG /(kJ∙mol-1) | ΔH /(kJ∙mol-1) | ΔS /(J∙mol-1∙K-1) |
---|---|---|---|
298 | -25.75 | 10.8 | 122.66 |
308 | -26.98 | ||
318 | -28.21 |
Table 5 Adsorption thermodynamic parameters of d-g-CN
T /K | ΔG /(kJ∙mol-1) | ΔH /(kJ∙mol-1) | ΔS /(J∙mol-1∙K-1) |
---|---|---|---|
298 | -25.75 | 10.8 | 122.66 |
308 | -26.98 | ||
318 | -28.21 |
19 | Hamza M F, Guibal E, Wei Y Z, et al. Magnetic amino-sulfonic dual sorbent for uranyl sorption from aqueous solutions—influence of light irradiation on sorption properties[J]. Chemical Engineering Journal, 2023, 456: 141099. |
20 | Bart S C, Meyer K. Highlights in uranium coordination chemistry[M]//Structure and Bonding. Berlin, Heidelberg: Springer, 2008: 119-176. |
21 | Hu B W, Wang H F, Liu R R, et al. Highly efficient U(Ⅵ) capture by amidoxime/carbon nitride composites: evidence of EXAFS and modeling[J]. Chemosphere, 2021, 274: 129743. |
22 | Wang Y, Zhang Y, Liu X L, et al. Fabrication of phosphoric-crosslinked chitosan@g-C3N4 gel beads for uranium(Ⅵ) separation from aqueous solution[J]. International Journal of Biological Macromolecules, 2023, 242(3): 124998. |
23 | Wu J K, Shi N, Li N, et al. Dual-ligand ZIF-8 bearing the cyano group for efficient and selective uranium capture from seawater[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 46952-46961. |
24 | Liu S, Wang Z, Lu Y X, et al. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent[J]. Applied Catalysis B: Environmental, 2021, 282: 119523. |
25 | Jiang N, Lyu L, Yu G F, et al. A dual-reaction-center Fenton-like process on —C N—Cu linkage between copper oxides and defect-containing g-C3N4 for efficient removal of organic pollutants[J]. Journal of Materials Chemistry A, 2018, 6(36): 17819-17828. |
26 | Chen L, Chen C, Yang Z, et al. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride[J]. Advanced Functional Materials, 2021, 31(46): 2105731. |
27 | Chen Q C, Lu C J, Ping B Y, et al. A hydroxyl-induced carbon nitride homojunction with functional surface for efficient photocatalytic production of H2O2 [J]. Applied Catalysis B: Environmental, 2023, 324: 122216. |
28 | Xiao G, Wang Y Q, Xu S N, et al. Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 305-313. |
29 | Schwinghammer K, Tuffy B, Mesch M B, et al. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution[J]. Angewandte Chemie International Edition, 2013, 52(9): 2435-2439. |
30 | Lin L H, Ren W, Wang C, et al. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 231: 234-241. |
31 | Zhang G G, Li G S, Lan Z A, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity[J]. Angewandte Chemie International Edition, 2017, 56(43): 13445-13449. |
32 | Yang F, Liu D Z, Li Y X, et al. Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 240: 64-71. |
33 | Zhou L, Lei J Y, Wang F C, et al. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production[J]. Applied Catalysis B: Environmental, 2021, 288: 119993. |
34 | Li Y X, Xu H, Ouyang S X, et al. In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible-light irradiation[J]. Journal of Materials Chemistry A, 2016, 4(8): 2943-2950. |
35 | Yan B J, Ma C X, Gao J X, et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater[J]. Advanced Materials, 2020, 32(10): e1906615. |
36 | Leng R, Sun Y C, Wang C Z, et al. Design and fabrication of hypercrosslinked covalent organic adsorbents for selective uranium extraction[J]. Environmental Science & Technology, 2023, 57(26): 9615-9626. |
37 | Liao J, He X S, Zhang Y, et al. The construction of magnetic hydroxyapatite-functionalized pig manure-derived biochar for the efficient uranium separation[J]. Chemical Engineering Journal, 2023, 457: 141367. |
38 | He Y R, Li S C, Li X L, et al. Graphene (rGO) hydrogel: a promising material for facile removal of uranium from aqueous solution[J]. Chemical Engineering Journal, 2018, 338: 333-340. |
39 | Li G, Huang Y, Lin J, et al. Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers[J]. Chemical Engineering Journal, 2020, 382: 122833. |
40 | Hao X, Chen R R, Liu Q, et al. A novel U(Ⅵ)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(Ⅵ) from simulated seawater[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2218-2226. |
41 | Xu L X, Li L, Fang P, et al. Removal of uranium (Ⅵ) ions from aqueous solution by graphitic carbon nitride stabilized FeS nanoparticles[J]. Journal of Molecular Liquids, 2022, 345: 117050. |
42 | Liu Y F, Ni S, Wang W J, et al. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction[J]. Journal of Hazardous Materials, 2024, 464: 133002. |
1 | Beltrami D, Cote G, Mokhtari H, et al. Recovery of uranium from wet phosphoric acid by solvent extraction processes[J]. Chemical Reviews, 2014, 114(24): 12002-12023. |
2 | Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies[J]. Renewable and Sustainable Energy Reviews, 2007, 11(7): 1388-1413. |
3 | Lindner H, Schneider E. Review of cost estimates for uranium recovery from seawater[J]. Energy Economics, 2015, 49: 9-22. |
4 | Kim J, Tsouris C, Mayes R T, et al. Recovery of uranium from seawater: a review of current status and future research needs[J]. Separation Science and Technology, 2013, 48(3): 367-387. |
5 | Amphlett J T M, Choi S, Parry S A, et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: chelation vs. anion exchange[J]. Chemical Engineering Journal, 2020, 392: 123712. |
6 | Boyarintsev A V, Perevalov S A, Stepanov S I, et al. Liquid–liquid extraction of neptunium(Ⅵ) and neptunium(Ⅴ) from carbonate solutions by methyltrioctylammonium carbonate in toluene[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327(1): 385-393. |
7 | Chu J, Huang Q G, Dong Y H, et al. Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane[J]. Chemical Engineering Journal, 2022, 444: 136602. |
8 | Hernández J, Ruiz D. Removal of chloride ions from a copper leaching solution, using electrodialysis, to improve the uranium extraction through ion-exchange[J]. Journal of Hazardous Materials, 2021, 420: 126582. |
9 | Yu K F, Li Y, Cao X, et al. In-situ constructing amidoxime groups on metal-free g-C3N4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(Ⅵ) extraction[J]. Journal of Hazardous Materials, 2023, 460: 132356. |
10 | Zhao S L, Yuan Y H, Yu Q H, et al. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater[J]. Angewandte Chemie International Edition, 2019, 58(42): 14979-14985. |
11 | Zou Y D, Cao X H, Luo X P, et al. Recycle of U(Ⅵ) from aqueous solution by situ phosphorylation mesoporous carbon[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(2): 515-525. |
12 | Liu X, Sun J, Xu X T, et al. Adsorption and desorption of U(Ⅵ) on different-size graphene oxide[J]. Chemical Engineering Journal, 2019, 360: 941-950. |
13 | 王莹, 李倩, 曹丽霞, 等. 生物质基铀吸附材料的研究进展[J]. 化工学报, 2021, 72(3): 1205-1216. |
Wang Y, Li Q, Cao L X, et al. Progress of biomass-based materials for uranium adsorption[J]. CIESC Journal, 2021, 72(3): 1205-1216. | |
14 | Yue Y F, Mayes R T, Kim J, et al. Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization[J]. Angewandte Chemie International Edition, 2013, 52(50): 13458-13462. |
15 | Cui A Q, Wu X Y, Ye J B, et al. “Two-in-one” dual-function luminescent MOF hydrogel for onsite ultra-sensitive detection and efficient enrichment of radioactive uranium in water[J]. Journal of Hazardous Materials, 2023, 448: 130864. |
16 | Sun Q, Aguila B, Earl L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): e1705479. |
17 | Zheng Y, Jiao Y, Zhu Y H, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017, 139(9): 3336-3339. |
18 | Zhang C L, Liu Y, Li X, et al. Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: batch, EXAFS and theoretical calculations[J]. Chemical Engineering Journal, 2018, 346: 406-415. |
43 | Gan J L, Zhang L Y, Wang Q L, et al. Synergistic action of multiple functional groups enhanced uranium extraction from seawater of porous phosphorylated chitosan/coal-based activated carbon composite sponge[J]. Desalination, 2023, 545: 116154. |
44 | Xiong X H, Yu Z W, Gong L L, et al. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions[J]. Advanced Science, 2019, 6(16): 1900547. |
45 | Zhu L E, Zhang C H, Ma F Q, et al. Hierarchical self-assembled polyimide microspheres functionalized with amidoxime groups for uranium-containing wastewater remediation[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5577-5589. |
[1] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[2] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[3] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[4] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[5] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[6] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[7] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[8] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[9] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[10] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[11] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[14] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[15] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||