CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1642-1654.DOI: 10.11949/0438-1157.20231418
• Separation engineering • Previous Articles Next Articles
Tiantian LYU(), Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI()
Received:
2024-01-03
Revised:
2024-03-31
Online:
2024-06-06
Published:
2024-04-25
Contact:
Qi SHI
吕田田(), 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪()
通讯作者:
石琪
作者简介:
吕田田(1999—),女,硕士研究生,lvtian0609@163.com
基金资助:
CLC Number:
Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural[J]. CIESC Journal, 2024, 75(4): 1642-1654.
吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654.
Add to citation manager EndNote|Ris|BibTeX
Samples | Bulk N/% | BET/(m²·g-1) | Total pore volume/ (cm³·g-1) | Cumulative pore volume/(cm3·g-1) | ||||
---|---|---|---|---|---|---|---|---|
<12 Å | 12~22 Å | 22~30 Å | 12~30 Å | 30~60 Å | ||||
ZTIF-8 | — | 1570.5 | 0.59 | 0.31 | 0.24 | 0 | 0.24 | 0 |
NCZTIF-8700C | 21.81 | 853.3 | 0.41 | 0.32 | 0 | 0 | 0 | 0 |
NCZTIF-8700C-800A0.5 | 12.33 | 1863.5 | 0.86 | 0.51 | 0.29 | 0 | 0.29 | 0 |
NCZTIF-8700C-800A1 | 6.85 | 3096.0 | 1.96 | 0.50 | 0.72 | 0.63 | 1.35 | 0 |
NCZTIF-8700C-800A2 | 1.62 | 2701.4 | 2.39 | 0.36 | 0.36 | 0.88 | 1.24 | 0.67 |
NCZTIF-8700C-800A4 | 1.30 | 2643.5 | 2.83 | 0.29 | 0.43 | 0.32 | 0.75 | 1.43 |
Table 1 Pore structures and elemental analysis of ZTIF-8, NCZTIF-8700C and NCZTIF-8700C-800A z
Samples | Bulk N/% | BET/(m²·g-1) | Total pore volume/ (cm³·g-1) | Cumulative pore volume/(cm3·g-1) | ||||
---|---|---|---|---|---|---|---|---|
<12 Å | 12~22 Å | 22~30 Å | 12~30 Å | 30~60 Å | ||||
ZTIF-8 | — | 1570.5 | 0.59 | 0.31 | 0.24 | 0 | 0.24 | 0 |
NCZTIF-8700C | 21.81 | 853.3 | 0.41 | 0.32 | 0 | 0 | 0 | 0 |
NCZTIF-8700C-800A0.5 | 12.33 | 1863.5 | 0.86 | 0.51 | 0.29 | 0 | 0.29 | 0 |
NCZTIF-8700C-800A1 | 6.85 | 3096.0 | 1.96 | 0.50 | 0.72 | 0.63 | 1.35 | 0 |
NCZTIF-8700C-800A2 | 1.62 | 2701.4 | 2.39 | 0.36 | 0.36 | 0.88 | 1.24 | 0.67 |
NCZTIF-8700C-800A4 | 1.30 | 2643.5 | 2.83 | 0.29 | 0.43 | 0.32 | 0.75 | 1.43 |
Samples | Single-component Qe/(mg·g-1) | Ternary-component Qi,e/(mg·g-1) | Si,j | |||||
---|---|---|---|---|---|---|---|---|
5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 842.0 | 399.7 | 86.1 | 555.8 | 60.8 | 9.5 | 5.0 | 12.3 |
NCZTIF-8700C-800A2 | 1072.7 | 626.6 | 111.5 | 803.6 | 103.5 | 5.8 | 4.2 | 29.0 |
NCZTIF-8700C-800A4 | 968.0 | 451.0 | 89.2 | 727.9 | 71.6 | 3.1 | 5.6 | 49.4 |
Table 2 Summary of static adsorption capacity and selectivity of NCZTIF-8700C-800A z
Samples | Single-component Qe/(mg·g-1) | Ternary-component Qi,e/(mg·g-1) | Si,j | |||||
---|---|---|---|---|---|---|---|---|
5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 842.0 | 399.7 | 86.1 | 555.8 | 60.8 | 9.5 | 5.0 | 12.3 |
NCZTIF-8700C-800A2 | 1072.7 | 626.6 | 111.5 | 803.6 | 103.5 | 5.8 | 4.2 | 29.0 |
NCZTIF-8700C-800A4 | 968.0 | 451.0 | 89.2 | 727.9 | 71.6 | 3.1 | 5.6 | 49.4 |
Samples | Ternary-component Qi,ads/(mg·g-1) | Si,j | |||
---|---|---|---|---|---|
5.0% 5-HMF | 2.5%LA | 1.0%FA | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 774.3 | 88.6 | 29.7 | 4.4 | 5.2 |
NCZTIF-8700C-800A2 | 1092.3 | 109.5 | 15.5 | 5.2 | 14.3 |
NCZTIF-8700C-800A4 | 1040.3 | 107.1 | 6.8 | 5.1 | 30.4 |
Table 3 Summary of dynamic column adsorption capacity and selectivity of NCZTIF-8700C-800A z
Samples | Ternary-component Qi,ads/(mg·g-1) | Si,j | |||
---|---|---|---|---|---|
5.0% 5-HMF | 2.5%LA | 1.0%FA | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 774.3 | 88.6 | 29.7 | 4.4 | 5.2 |
NCZTIF-8700C-800A2 | 1092.3 | 109.5 | 15.5 | 5.2 | 14.3 |
NCZTIF-8700C-800A4 | 1040.3 | 107.1 | 6.8 | 5.1 | 30.4 |
1 | Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployment of photovoltaics—effects of innovation-driven roadmaps on material constraints until 2050[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110589. |
2 | Galimova T, Ram M, Bogdanov D, et al. Global demand analysis for carbon dioxide as raw material from key industrial sources and direct air capture to produce renewable electricity-based fuels and chemicals[J]. Journal of Cleaner Production, 2022, 373: 133920. |
3 | Martin N, Madrid-López C, Villalba-Méndez G, et al. New techniques for assessing critical raw material aspects in energy and other technologies[J]. Environmental Science & Technology, 2022, 56(23): 17236-17245. |
4 | Mujtaba M, Fernandes Fraceto L, Fazeli M, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics[J]. Journal of Cleaner Production, 2023, 402: 136815. |
5 | Zhang B, Biswal B K, Zhang J J, et al. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives[J]. Chemical Reviews, 2023, 123(11): 7193-7294. |
6 | Xu C, Paone E, Rodríguez-Padrón D, et al. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural[J]. Chemical Society Reviews, 2020, 49(13): 4273-4306. |
7 | Zhang X G, Wilson K, Lee A F. Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368. |
8 | Slak J, Pomeroy B, Kostyniuk A, et al. A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural[J]. Chemical Engineering Journal, 2022, 429: 132325. |
9 | Wang H Y, Zhu C H, Li D, et al. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 227-247. |
10 | Hu L, Wu Y R, Li M W, et al. Highly selective adsorption of 5-hydroxymethylfurfural from multicomponent mixture by simple pH controlled in batch and fixed-bed column studies: competitive isotherms, kinetic and breakthrough curves simulation[J]. Separation and Purification Technology, 2022, 299: 121756. |
11 | Hu L, Wu Z, Jiang Y T, et al. Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110317. |
12 | 石宁, 刘琪英, 王铁军, 等. 葡萄糖催化脱水制取5-羟甲基糠醛研究进展[J]. 化工进展, 2012, 31(4): 792-800. |
Shi N, Liu Q Y, Wang T J, et al. Preparation of 5-hydroxymethylfurfural from glucose by catalytic dehydration[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 792-800. | |
13 | Chen S, Wojcieszak R, Dumeignil F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
14 | Sayed M, Warlin N, Hulteberg C, et al. 5-Hydroxymethylfurfural from fructose: an efficient continuous process in a water-dimethyl carbonate biphasic system with high yield product recovery[J]. Green Chemistry, 2020, 22(16): 5402-5413. |
15 | Jeong G T, Kim S K. Statistical optimization of levulinic acid and formic acid production from lipid-extracted residue of Chlorella vulgaris [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105142. |
16 | Enomoto K, Hosoya T, Miyafuji H. High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system[J]. Cellulose, 2018, 25(4): 2249-2257. |
17 | Wei Z J, Liu Y X, Thushara D, et al. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid[J]. Green Chemistry, 2012, 14(4): 1220-1226. |
18 | Johnson R L, Perras F A, Hanrahan M P, et al. Condensed phase deactivation of solid Brønsted acids in the dehydration of fructose to hydroxymethylfurfural[J]. ACS Catalysis, 2019, 9(12): 11568-11578. |
19 | Wang H Y, Cui J J, Zhao Y L, et al. Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids[J]. Green Chemistry, 2021, 23(1): 405-411. |
20 | Román-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937. |
21 | Sun X F, Liu Z H, Xue Z M, et al. Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide[J]. Green Chemistry, 2015, 17(5): 2719-2722. |
22 | Yang Q, Runge T. Cross-linked polyethylenimine for selective adsorption and effective recovery of lignocellulose-derived organic acids and aldehydes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 933-943. |
23 | Chen X F, Li H L, Ji X R, et al. Preparation, separation and purification of 5-hydroxymethylfurfural from sugarcane molasses by a self-synthesized hyper-cross-linked resin[J]. Separation and Purification Technology, 2023, 315: 123661. |
24 | Yabushita M, Li P, Kobayashi H, et al. Complete furanics-sugar separations with metal-organic framework NU-1000[J]. Chemical Communications, 2016, 52(79): 11791-11794. |
25 | Yoo W C, Rajabbeigi N, Mallon E E, et al. Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents[J]. Microporous and Mesoporous Materials, 2014, 184: 72-82. |
26 | 赵宇, 石琪, 董晋湘. ZIFs椭圆形孔窗的精细调控及糠醛/5-羟甲基糠醛吸附分离性能研究[J]. 化工学报, 2021, 72(1): 555-568. |
Zhao Y, Shi Q, Dong J X. Fine adjustment of elliptical windows of ZIFs and performances of adsorptive separation of furfural/5-hydroxymethylfurfural[J]. CIESC Journal, 2021, 72(1): 555-568. | |
27 | Hu L, Zheng J Y, Li Q, et al. Adsorption of 5-hydroxymethylfurfural, levulinic acid, formic acid, and glucose using polymeric resins modified with different functional groups[J]. ACS Omega, 2021, 6(26): 16955-16968. |
28 | Hu L, Tao S H, Xian J T, et al. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. Chinese Journal of Chemical Engineering, 2022, 43: 230-239 |
29 | Zhang Y B, Luo Q X, Lu M H, et al. Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration [J]. Chemical Engineering Journal, 2019, 358: 467-479. |
30 | Jin H, Li Y S, Liu X L, et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks[J]. Chemical Engineering Science, 2015, 124: 170-178. |
31 | Swift T D, Bagia C, Nikolakis V, et al. Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments [J]. Aiche Journal, 2013, 59(9): 3378-3390. |
32 | Dornath P, Fan W. Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent[J]. Microporous and Mesoporous Materials, 2014, 191: 10-17. |
33 | Li M Y, Wang F, Zhang J. Zeolitic tetrazolate-imidazolate frameworks with SOD topology for room temperature fixation of CO2 to cyclic carbonates[J]. Crystal Growth & Design, 2020, 20(5): 2866-2870. |
34 | Yuan M, Liu Z Q, Lv T T, et al. Confinement effect and efficient adsorption of furfural onto ZIF-8-derived microporous carbon [J]. Journal of Chemical Technology and Biotechnology, 2023, 98(5): 1166-1174. |
35 | Gao M Z, Wang J, Rong Z H, et al. A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies[J]. RSC Advances, 2018, 8(69): 39627-39634. |
36 | Yuan M, Liu T C, Shi Q, et al. Understanding the KOH activation mechanism of zeolitic imidazolate framework-derived porous carbon and their corresponding furfural/acetic acid adsorption separation performance[J]. Chemical Engineering Journal, 2022, 428: 132016. |
37 | Yuan M, Gao M Z, Shi Q, et al. Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived porous carbon materials[J]. Chemical Engineering Journal, 2020, 379: 122412. |
[1] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[2] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[3] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[4] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[5] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[6] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[7] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[8] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[9] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[10] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[11] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[12] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[13] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[14] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[15] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||