CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2709-2722.DOI: 10.11949/0438-1157.20240040
• Material science and engineering, nanotechnology • Previous Articles
Haiyan DU1(), Kai ZHU1, Feng YOU2, Jinfeng WANG1, Yifan ZHAO1, Nan ZHANG1, Ying LI3
Received:
2024-01-09
Revised:
2024-04-28
Online:
2024-08-09
Published:
2024-07-25
Contact:
Haiyan DU
杜海燕1(), 朱凯1, 游峰2, 王金凤1, 赵一帆1, 张楠1, 李英3
通讯作者:
杜海燕
作者简介:
杜海燕(1982—),女,博士,副教授,duhaiyan428@163.com
基金资助:
CLC Number:
Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors[J]. CIESC Journal, 2024, 75(7): 2709-2722.
杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722.
Fig.4 Stretched macrograph of PIPD gels (a); Stress-strain curves of PIPD gels (b); Cyclic tensile and cyclic compression test of PIPD-0.4 gel [(c)—(e)]; Electrical conductivity, strain sensing and speech recognition testing of PIPD gels [(f)—(l)]
Fig.6 Self-healing macrograph and tensile curves of PIPD gels [(a)—(f)]; Self-healing mechanism (g); The rheological performance curves of original and healed gels [(h),(i)]
Fig.7 Strain sensing response of PIPD-0.4 gel before and after self-healing: Impact of strain on resistance [(a),(e)]; Sensitivity fitting curve [(b),(f)]; Strain sensing stability test[(c),(g)]; Real-time detection of finger joints [(d),(h)]
Fig.8 Macrograph and mass loss curve of PIPD gels at 25℃ and -25℃ for 7 days [(a)—(c)]; DSC curves of PIPD-0 and PIPD-0.4 (d); Strain sensing of PIPD gels at low temperature (-25℃) [(e)—(h)]
1 | Amoli V, Kim J S, Kim S Y, et al. Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress[J]. Advanced Functional Materials, 2020, 30(20): 4532-4563. |
2 | Li P J, Yang X T, Chen F X, et al. Confined water dominates ion/molecule transport in hydrogel nanochannels[J]. Nano Letters, 2024, 24(3): 897-904. |
3 | Lee J H, Cho K, Kim J K. Age of flexible electronics: emerging trends in soft multifunctional sensors[J]. Advanced Materials, 2024, 36(16): 505-536. |
4 | Chu Z M, Jiao W C, Huang Y F, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring[J]. Journal of Materials Chemistry A, 2021, 9(15): 9634-9643. |
5 | Ma L L, Wang J X, He J M, et al. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing[J]. Journal of Materials Chemistry A, 2021, 9(47): 26949-26962. |
6 | Jiang C C, Lai X J, Wu Z Z, et al. A high-thermopower ionic hydrogel for intelligent fire protection[J]. Journal of Materials Chemistry A, 2022, 10(40): 21368-21378. |
7 | 王雨柔, 王国琪, 李想, 等. 溶液法制备柔性压阻式传感器的研究进展[J]. 化学学报, 2022, 80(2): 214-228. |
Wang Y R, Wang G Q, Li X, et al. Research progress of flexible piezoresistive sensors prepared by solution-based processing[J]. Acta Chimica Sinica, 2022, 80(2): 214-228. | |
8 | Sher M, Shah L A, Ara L, et al. Xanthan gum toughen ionically conductive hydrogels for flexible and artificial epidermis sensors with multifunctionality and self-healability[J]. Sensors and Actuators A: Physical, 2024, 370: 199-209. |
9 | Rong Q F, Lei W W, Huang J, et al. Low temperature tolerant organohydrogel electrolytes for flexible solid‐state supercapacitors[J]. Advanced Energy Materials, 2018, 8(31): 1967-1973. |
10 | Wei P L, Chen T, Chen G Y, et al. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 3068-3079. |
11 | Yu J, Feng Y F, Sun D, et al. Highly conductive and mechanically robust cellulose nanocomposite hydrogels with antifreezing and antidehydration performances for flexible humidity sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10886-10897. |
12 | Pan S X, Xia M, Li H H, et al. Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring[J]. Journal of Materials Chemistry C, 2020, 8(8): 2827-2837. |
13 | Yiming B, Guo X, Ali N, et al. Ambiently and mechanically stable ionogels for soft ionotronics[J]. Advanced Functional Materials, 2021, 31(33): 2102773. |
14 | Vishnyakov A, Lyubartsev A P, Laaksonen A. Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide- water mixture[J]. The Journal of Physical Chemistry A, 2001, 105(10): 1702-1710. |
15 | Wong D B, Sokolowsky K P, El-Barghouthi M I, et al. Water dynamics in water/DMSO binary mixtures[J]. The Journal of Physical Chemistry B, 2012, 116(18): 5479-5490. |
16 | 郑夏, 刘建亭, 刘樟, 等. 仿生控冰材料用于细胞及组织的冷冻保存[J]. 化学学报, 2021, 79(6): 729-741. |
Zheng X, Liu J T, Liu Z, et al. Bio-inspired ice-controlling materials for cryopreservation of cells and tissues[J]. Acta Chimica Sinica, 2021, 79(6): 729-741. | |
17 | Ye Y H, Zhang Y F, Chen Y, et al. Cellulose nanofibrils enhanced, strong, stretchable, freezing‐tolerant ionic conductive organohydrogel for multi-functional sensors[J]. Advanced Functional Materials, 2020, 30(35): 3430-3441. |
18 | Sebastian S, Rohila Y, Yadav E, et al. Supramolecular organo/hydrogel-fabricated long alkyl chain α-amidoamides as a smart soft material for pH-responsive curcumin release[J]. Biomacromolecules, 2024, 25(2): 975-989. |
19 | Nita L E, Chiriac A P, Ghilan A, et al. Alginate enriched with phytic acid for hydrogels preparation[J]. International Journal of Biological Macromolecules, 2021, 181: 561-571. |
20 | Zhang S, Zhang Y H, Li B, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448. |
21 | Zhao Y Z, Liang Q D, Mugo S M, et al. Self‐healing and shape‐editable wearable supercapacitors based on highly stretchable hydrogel electrolytes[J]. Advanced Science, 2022, 9(24): 39-51. |
22 | Gu C N, Wang M K, Zhang K H, et al. A full‐device autonomous self‐healing stretchable soft battery from self‐bonded eutectogels[J]. Advanced Materials, 2023, 35(6): 8392-8404. |
23 | Marolt G, Šala M, Pihlar B. Voltammetric investigation of iron(Ⅲ) interactions with phytate[J]. Electrochimica Acta, 2015, 176: 1116-1125. |
24 | Dang D Q, Park N, Kim J, et al. Dual‐crosslinked hydrogels with metal coordination from novel co‐polyaspartamide containing 1,2‐dihydroxy and imidazole pendant groups[J]. Journal of Applied Polymer Science, 2021, 138(43): 51278-51290. |
25 | Yang H C, Guo X J, Chen R R, et al. A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater[J]. Applied Surface Science, 2020, 525: 146611-146622. |
26 | Feng E K, Li X, Li J J, et al. Stretchable, healable, adhesive, transparent, anti-drying and anti-freezing organohydrogels toward multi-functional sensors and information platforms[J]. Journal of Materials Chemistry C, 2021, 9(43): 15530-15541. |
27 | Xia Y L, He Y, Zhang F H, et al. A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33(6): 713-745. |
28 | Hu L X, Chee P L, Sugiarto S, et al. Hydrogel‐based flexible electronics[J]. Advanced Materials, 2023, 35(14): 5326-5357. |
29 | Liu Y Z, Wang W Q, Gu K, et al. Poly(vinyl alcohol) hydrogels with integrated toughness, conductivity, and freezing tolerance based on ionic liquid/water binary solvent systems[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 29008-29020. |
30 | 刘玲玲, 丁蕾, 徐莉, 等. 化学交联聚乙烯醇改性纤维素碱性阴离子交换复合膜的制备与性能[J]. 物理化学学报, 2011, 27(11): 2665-2670. |
Liu L L, Ding L, Xu L, et al. Synthesis and properties of chemically cross-linked poly(vinyl alcohol) modified quaterized hydroxyethylcellulose ethoxylate as novel alkaline anion-exchange membrane[J]. Acta Physico-Chimica Sinica, 2011, 27(11): 2665-2670. | |
31 | 陈玉娟, 王燕鸿, 樊栓狮, 等. 不同浓度聚乙烯醇对甲烷水合物分解作用的分子动力学模拟[J]. 化学学报, 2010, 68(22): 2253-2258. |
Chen Y J, Wang Y H, Fan S S., et al. Molecular dynamic simulation of methane hydrate decomposition with polyvinyl alcohol at different concentrations[J]. Acta Chimica Sinica, 2010, 68(22): 2253-2258. | |
32 | Xu L J, Gao S, Guo Q R, et al. A solvent‐exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels[J]. Advanced Materials, 2020, 32(52): 4579-4585. |
33 | Hu R F, Zhao J, Wang Y H, et al. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications[J]. Chemical Engineering Journal, 2019, 360: 334-341. |
34 | Liu Y N, Li H L, Wang X, et al. Flexible supercapacitors with high capacitance retention at temperatures from -20 to 100℃ based on DMSO-doped polymer hydrogel electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(20): 12051-12059. |
35 | Thakur K, Rajhans A, Kandasubramanian B. Starch/PVA hydrogels for oil/water separation[J]. Environmental Science and Pollution Research, 2019, 26(31): 32013-32028. |
36 | Zhu B D, Ma D Z, Wang J, et al. Structure and properties of semi-interpenetrating network hydrogel based on starch[J]. Carbohydrate Polymers, 2015, 133: 448-455. |
37 | Heimer N E, Del Sesto R E, Meng Z Z, et al. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids[J]. Journal of Molecular Liquids, 2006, 124(1/2/3): 84-95. |
38 | Feng W Q, Lu Y H, Chen Y, et al. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 143-154. |
39 | Sakai H, Ikemoto Y, Kinoshita T, et al. Fourier-transform spectra of metal salts of phytic acid in the mid- to far-infrared spectral range[J]. Vibrational Spectroscopy, 2017, 92: 215-219. |
40 | Klemenkova Z S, Kononova E G. Elucidation of the water-DMSO mixing process based on an IR study[J]. Journal of Solution Chemistry, 2015, 44(2): 280-292. |
41 | Kannan P P, Karthick N K, Mahendraprabu A, et al. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies[J]. Journal of Molecular Structure, 2017, 1139: 196-201. |
42 | Deyab M A, Zaky M T, Nessim M I. Inhibition of acid corrosion of carbon steel using four imidazolium tetrafluoroborates ionic liquids[J]. Journal of Molecular Liquids, 2017, 229: 396-404. |
43 | Wang B X, Xu W, Yang Z C, et al. An overview on recent progress of the hydrogels: from material resources, properties, to functional applications[J]. Macromolecular Rapid Communications, 2022, 43(6): 785-806. |
44 | Bai R B, Yang J W, Morelle X P, et al. Fatigue fracture of self-recovery hydrogels[J]. ACS Macro Letters, 2018, 7(3): 312-317. |
45 | Fu D, Huang G Q, Xie Y, et al. Novel uracil-functionalized poly(ionic liquid) hydrogel: highly stretchable and sensitive as a direct wearable ionic skin for human motion detection[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 11062-11075. |
46 | He W D, Guo X C, Xia P, et al. Temperature and pressure sensitive ionic conductive triple-network hydrogel for high-durability dual signal sensors[J]. Journal of Colloid and Interface Science, 2023, 647: 456-466. |
47 | Wu J T, Xia G J, Li S B, et al. A flexible and self-healable gelled polymer electrolyte based on a dynamically cross-linked PVA ionogel for high-performance supercapacitors[J]. Industrial & Engineering Chemistry Research, 2020, 59(52): 22509-22519. |
48 | Peng F, Li G Z, Liu X X, et al. Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(Ⅲ) ions switched by light[J]. Journal of the American Chemical Society, 2008, 130(48): 16166-16167. |
49 | 王姣, 姚虹, 周琦, 等. 基于柱[5]芳烃主客体包结构筑分子响应型超分子水凝胶[J]. 有机化学, 2020, 40(1): 175-180. |
Wang J, Yao H, Zhou Q, et al. Molecule-responsive supramolecular hydrogel constructed from pillar[5]arene based on host-guest system[J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 175-180. | |
50 | Zhang Y P, Xu J H, Wang H B. Bio-based, self-adhesive, and self-healing ionogel with excellent mechanical properties for flexible strain sensor[J]. RSC Advances, 2021, 11(59): 37661-37666. |
51 | Lan J, Li Y S, Yan B, et al. Transparent stretchable dual-network ionogel with temperature tolerance for high-performance flexible strain sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37597-37606. |
[1] | Juan JIA, Yang YANG, Xun ZHU, Dingding YE, Rong CHEN, Qiang LIAO. Hydrogel-based drug releasing system with external electricity stimulation for wound dressing [J]. CIESC Journal, 2024, 75(7): 2700-2708. |
[2] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
[3] | Wenhui ZHANG, Ruyi TANG, Xili CUI, Huabin XING. Fluorine spectrum analysis and structural characterization of Y-type perfluoropolyether carboxylic acid [J]. CIESC Journal, 2024, 75(4): 1718-1723. |
[4] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[5] | Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization [J]. CIESC Journal, 2024, 75(4): 1118-1136. |
[6] | Ruirui WANG, Ying JIN, Yumei LIU, Mengyue LI, Shengwen ZHU, Ruiyi YAN, Ruixia LIU. Study on design of polymeric ionic liquids and the performance for selective oxidation of cyclohexane [J]. CIESC Journal, 2024, 75(4): 1552-1564. |
[7] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[8] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[9] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[10] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[11] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[12] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[13] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[14] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[15] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 255
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||