CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3825-3834.DOI: 10.11949/0438-1157.20240397
• Process safety • Previous Articles
Hailin JIA(), Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU
Received:
2024-04-09
Revised:
2024-05-03
Online:
2024-11-04
Published:
2024-10-25
Contact:
Hailin JIA
通讯作者:
贾海林
作者简介:
贾海林(1980—),男,博士,副教授,jiahailin@hpu.edu.cn
基金资助:
CLC Number:
Hailin JIA, Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU. True fire experimental and molecular dynamic simulation of fluorine-free foam extinguishing agent[J]. CIESC Journal, 2024, 75(10): 3825-3834.
贾海林, 曾锦祥, 潘荣锟, 潘仕利, 周凯旋. 无氟泡沫灭火剂真火实验与分子动力学模拟[J]. 化工学报, 2024, 75(10): 3825-3834.
原材料 | 生产厂商 | 主要成分及含量 | 离子属性 | CMC/%(质量) | 平衡表面 张力/(mN/m) |
---|---|---|---|---|---|
SILOK | 广州斯洛柯高子聚合物有限公司 | 甲基(丙基氢氧化物、乙氧基化物)双(三甲基甲硅烷氧基)硅烷65%~70% | 阴离子 | 0.04 | 21.7 |
SDS | 广东高顺化工进出口有限公司 | 十二烷基硫酸钠98.5% | 阴离子 | 0.03 | 29.6 |
CHX-3 | 成都科宏达科技有限公司 | 月桂酰胺丙基甜菜碱 45% | 两性离子 | 0.48 | 28.3 |
异丁醇 | 天津市风船化剂科技有限公司 | 异丁醇 99% | — | — | — |
Table 1 Base agent information of fluorine-free foam extinguishing agent
原材料 | 生产厂商 | 主要成分及含量 | 离子属性 | CMC/%(质量) | 平衡表面 张力/(mN/m) |
---|---|---|---|---|---|
SILOK | 广州斯洛柯高子聚合物有限公司 | 甲基(丙基氢氧化物、乙氧基化物)双(三甲基甲硅烷氧基)硅烷65%~70% | 阴离子 | 0.04 | 21.7 |
SDS | 广东高顺化工进出口有限公司 | 十二烷基硫酸钠98.5% | 阴离子 | 0.03 | 29.6 |
CHX-3 | 成都科宏达科技有限公司 | 月桂酰胺丙基甜菜碱 45% | 两性离子 | 0.48 | 28.3 |
异丁醇 | 天津市风船化剂科技有限公司 | 异丁醇 99% | — | — | — |
配方 | SILOK | 异丁醇 | SDS | CHX-3 | 黄原胶 | 二乙二醇丁醚 | 尿素 | APP | 乙二醇 | 水 |
---|---|---|---|---|---|---|---|---|---|---|
Case1 | 0.040% | 0.100% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.216% |
Case2 | 0.040% | 0.030% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.286% |
Case3 | 0.040% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.766% |
Case4 | 0.100% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.706% |
Case5 | 0.100% | 0.030% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.776% |
Table 2 Compositional formulation of fluorine-free foam extinguishing agent
配方 | SILOK | 异丁醇 | SDS | CHX-3 | 黄原胶 | 二乙二醇丁醚 | 尿素 | APP | 乙二醇 | 水 |
---|---|---|---|---|---|---|---|---|---|---|
Case1 | 0.040% | 0.100% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.216% |
Case2 | 0.040% | 0.030% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.286% |
Case3 | 0.040% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.766% |
Case4 | 0.100% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.706% |
Case5 | 0.100% | 0.030% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.776% |
方案 | 表面张力/(mN/m) | 发泡高度/mm | 稳泡系数 | 发泡倍数 | 25%析液时间/s |
---|---|---|---|---|---|
Case1 | 22.6 | 167 | 0.9640 | 5.6 | 206 |
Case2 | 22.7 | 183 | 0.9617 | 6.6 | 203 |
Case3 | 21.3 | 196 | 0.9695 | 6.9 | 223 |
Case4 | 20.3 | 187 | 0.9733 | 6.7 | 238 |
Case5 | 20.5 | 210 | 0.9762 | 7.6 | 236 |
Table 3 Foam base property of fluorine-free foam extinguishing agent
方案 | 表面张力/(mN/m) | 发泡高度/mm | 稳泡系数 | 发泡倍数 | 25%析液时间/s |
---|---|---|---|---|---|
Case1 | 22.6 | 167 | 0.9640 | 5.6 | 206 |
Case2 | 22.7 | 183 | 0.9617 | 6.6 | 203 |
Case3 | 21.3 | 196 | 0.9695 | 6.9 | 223 |
Case4 | 20.3 | 187 | 0.9733 | 6.7 | 238 |
Case5 | 20.5 | 210 | 0.9762 | 7.6 | 236 |
泡沫复配体系 | 与水成氢键的分子 | 最小键长/nm | 最大键长/nm | 最小键角/(°) | 最大键角/(°) |
---|---|---|---|---|---|
CHX-3/SILOK/异丁醇体系 | CHX-3 | 0.173 | 0.237 | 104.36 | 132.40 |
异丁醇 | 0.257 | 0.304 | 108.05 | 134.11 | |
SILOK | 0.232 | 0.311 | 95.18 | 155.08 | |
SDS/SILOK/异丁醇体系 | SDS | 0.239 | 0.318 | 103.24 | 129.91 |
异丁醇 | 0.248 | 0.308 | 109.02 | 133.87 | |
SILOK | 0.228 | 0.315 | 96.47 | 148.91 |
Table 4 Hydrogen bond length and bond angle of two kinds of compound system
泡沫复配体系 | 与水成氢键的分子 | 最小键长/nm | 最大键长/nm | 最小键角/(°) | 最大键角/(°) |
---|---|---|---|---|---|
CHX-3/SILOK/异丁醇体系 | CHX-3 | 0.173 | 0.237 | 104.36 | 132.40 |
异丁醇 | 0.257 | 0.304 | 108.05 | 134.11 | |
SILOK | 0.232 | 0.311 | 95.18 | 155.08 | |
SDS/SILOK/异丁醇体系 | SDS | 0.239 | 0.318 | 103.24 | 129.91 |
异丁醇 | 0.248 | 0.308 | 109.02 | 133.87 | |
SILOK | 0.228 | 0.315 | 96.47 | 148.91 |
1 | 孙金华, 胡隆华. 城市高层建筑重大火灾防控立项报告[J]. 科技资讯, 2016, 14(32): 186. |
Sun J H, Hu L H. Proposal of 973 project “fire protection for city high-rise buildings”[J]. Science & Technology Information, 2016, 14(32): 186. | |
2 | Zhou B, Yang W Y, Yoshioka H, et al. Research on suppression effectiveness of compressed air foam for oil-immersed transformer hot oil fire[J]. Case Studies in Thermal Engineering, 2023, 49: 103272. |
3 | Jiang W X, Wang J F, Varbanov P S, et al. Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation[J]. Energy, 2024, 292: 130354. |
4 | Lyu Y, Huang Q Y, Liu L Q, et al. Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation[J]. Energy, 2022, 250: 123811. |
5 | 邓军, 李鑫, 王凯, 等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术, 2024, 52(1): 154-177. |
Deng J, Li X, Wang K, et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology, 2024, 52(1): 154-177. | |
6 | 余明高, 王亮, 李海涛, 等. 我国煤矿防灭火材料的研究现状及发展趋势[J]. 矿业安全与环保, 2022, 49(4): 22-36. |
Yu M G, Wang L, Li H T, et al. Research status and development trend of fire-extinguishing materials in Chinese coal mines[J]. Mining Safety & Environmental Protection, 2022, 49(4): 22-36. | |
7 | Zhang Z Y, Zong R W, Tao C F, et al. Experimental study on flame height of two oil tank fires under different lip heights and distances[J]. Process Safety and Environmental Protection, 2020, 139: 182-190. |
8 | Kang W D, Xu Z S, Yan L, et al. Preparation of fluorine-free foam extinguishing agent based on silicone and hydrocarbon surfactants for markedly suppressing the pool fire[J]. Thermal Science and Engineering Progress, 2023, 40: 101761. |
9 | Ratzer A F. History and development of foam as a fire extinguishing medium[J]. Industrial & Engineering Chemistry, 1956, 48(11): 2013-2016. |
10 | 余明高, 徐俊, 于水军, 等. 含复合添加剂细水雾熄灭煤油池火实验[J]. 煤炭学报, 2007, 32(3): 288-291. |
Yu M G, Xu J, Yu S J, et al. Experimental on water mist contained compound additives extinguish kerosene pool fire[J]. Journal of China Coal Society, 2007, 32(3): 288-291. | |
11 | Zhou Y T, Jin Y, Shen Y C, et al. Adjustable surface activity and wetting ability of anionic hydrocarbon and nonionic short-chain fluorocarbon surfactant mixtures: effects of Li+ and Mg2+ [J]. Journal of Molecular Liquids, 2022, 350: 118538. |
12 | 秦波涛, 冯乐乐, 蒋文婕, 等. 矿井泡沫防灭火技术研究进展[J]. 煤炭科技, 2022, 43(5): 1-12, 26. |
Qin B T, Feng L L, Jiang W J, et al. Research progress on extinguishing foam of coal mine[J]. Coal Science & Technology Magazine, 2022, 43(5): 1-12, 26. | |
13 | Tu J P, Pau D, Yang T Q, et al. Effect of foam air mixing on flame intensification — comparative experimental study of foam and water sprays extinguishing transformer oil pool fire[J]. Fire Safety Journal, 2022, 133: 103664. |
14 | 余潇阳. 高稳定无氟蛋白泡沫的稳定机制与灭火性能研究[D]. 合肥: 中国科学技术大学, 2023. |
Yu X Y. Stability mechanism and fire extinguishing performance of highly stable fluorine-free protein foam[D]. Hefei: University of Science and Technology of China, 2023. | |
15 | Chen T, Zhang P, Wang D Z, et al. Research on suppression effect of low-expansion AFFF, AFFF/AR and FFFP foam on hot oil fire for oil-immersed transformers[J]. Thermal Science and Engineering Progress, 2023, 43: 101991. |
16 | Tang Y, Hou F, Zhong X X, et al. Combination of heat energy extraction and fire control in underground high-temperature zones of coal fire areas[J]. Energy, 2023, 278: 127801. |
17 | Li H, Yu X Y, Qiu K, et al. Role of salts in fire extinguishing performance of aqueous film-forming foam (AFFF)[J]. Case Studies in Thermal Engineering, 2023, 49: 103159. |
18 | Szymczyk K, Zdziennicka A, Jańczuk B. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones[J]. Advances in Colloid and Interface Science, 2021, 292: 102421. |
19 | Yang L, Min R, Wang G J, et al. Evaluation of interfacial, micellar, and foaming properties of the solutions comprising fluorocarbon surfactant, cocamidopropyl betaine, and Gleditsia saponin as fire-extinguishing agents[J]. Chemical Engineering Science, 2023,272:118590. |
20 | Yu X Y, Qiu K, Yu X, et al. Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2022, 359: 119225. |
21 | Yang Y P, Tan H L, Zhang J Q, et al. Surface activity and foam properties of novel Gemini short-chain fluorocarbon and hydrocarbon mixed system in aqueous solutions[J]. Thermal Science and Engineering Progress, 2023, 38: 101628. |
22 | Jiang N, Sheng Y J, Li C H, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268: 249-255. |
23 | Kong D P, Wang D S, Chen J, et al. Assessing the mixed foam stability of different foam extinguishing agents under room temperature and thermal radiation: an experimental study[J]. Journal of Molecular Liquids, 2023, 369: 120805. |
24 | Ananth R, Snow A W, Hinnant K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123686. |
25 | Yu X Y, Jiang N, Miao X Y, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2020, 133: 201-215. |
26 | 张华海, 王悦琳, 王铁峰. 全浓度范围下醇类表面活性剂对气泡聚并影响的实验研究[J]. 化工学报, 2020, 71(9): 4161-4167. |
Zhang H H, Wang Y L, Wang T F. Experimental study on effect of alcohol surfactants on bubble coalescence in full range of concentrations[J]. CIESC Journal, 2020, 71(9): 4161-4167. | |
27 | 蒋新生, 吕科宗, 魏树旺, 等. 基于响应曲面法的三相泡沫灭火剂基础配方优化设计[J]. 化工学报, 2017, 68(7): 2886-2895. |
Jiang X S, Lü K Z, Wei S W, et al. Optimal design of three phase fire-fighting foam formulation based on response surface methodology[J]. CIESC Journal, 2017, 68(7): 2886-2895. | |
28 | Liu J J, Zhang Y H, Li F, et al. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China[J]. Environmental Research, 2024, 247: 118214. |
29 | 任志远, 彭政, 姜晨, 等. 典型新污染物治理国际经验研究: 以《斯德哥尔摩公约》管控的持久性有机污染物为例[J]. 环境影响评价, 2023, 45(2): 18-25. |
Ren Z Y, Peng Z, Jiang C, et al. International experience in the management of typical new pollutants: a case study of POPs regulated under Stockholm convention[J]. Environmental Impact Assessment, 2023, 45(2): 18-25. | |
30 | 贾海林, 崔博, 陈南, 等. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 4235-4244. |
Jia H L, Cui B, Chen N, et al. Foam performance analysis of fluorine-free foam modified by low carbon alcohol and experimental study on extinguishing oil pool fire[J]. CIESC Journal, 2022, 73(9): 4235-4244. | |
31 | Zhao W H, Cheng Y Q, Lu S, et al. Synthesis and surface activity of two novel phosphate silicone surfactants[J]. Journal of Molecular Liquids, 2023, 390: 123154. |
32 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 泡沫灭火剂: [S]. 北京: 中国标准出版社, 2006. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Repubic of China. Foam extinguishing agent: [S]. Beijing: Standards Press of China, 2006. | |
33 | 张兴强. 基于池火灾模型与事故树分析的石油库安全评价[J]. 石油库与加油站, 2021, 30(1): 7-11. |
Zhang X Q. Safety evaluation of oil depot based on pool fire model and fault tree analysis[J]. Oil Depot and Gas Station, 2021, 30(1): 7-11. | |
34 | 胡超, 朱国庆, 吴维华, 等. 池火危害模型化计算分析研究[J]. 消防科学与技术, 2011, 30(7): 570-573. |
Hu C, Zhu G Q, Wu W H, et al. The model calculation and analysis of the pool fire hazards[J]. Fire Science and Technology, 2011, 30(7): 570-573. | |
35 | 孔得朋, 刘鹏翔, 王昌建, 等. 小尺度沸溢油池火灾燃烧速率特性试验研究[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 136-143. |
Kong D P, Liu P X, Wang C J, et al. Small scale experiment study on burning rate characteristics of boilovers[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 136-143. | |
36 | 刘文川, 汤积仁, 张慧栋, 等. 过热液体闪沸喷射钻进羽流相互作用调控及成孔直径预测[J]. 煤炭学报, 2022, 47(9): 3270-3283. |
Liu W C, Tang J R, Zhang H D, et al. Modulation of plume interaction and diameter prediction of boreholes induced by novel flash boiling jet drilling[J]. Journal of China Coal Society, 2022, 47(9): 3270-3283. | |
37 | 赵振, 王睿坤, 叶学民, 等. 吸附剂表面含氧官能团对苯酚吸附特性的分子动力学模拟[J]. 煤炭学报, 2019, 44(S1): 296-304. |
Zhao Z, Wang R K, Ye X M, et al. Molecular dynamics simulation on adsorption performances of phenol by oxygenic functional groups on adsorbent surface[J]. Journal of China Coal Society, 2019, 44(S1): 296-304. | |
38 | Rachuru S, Vandanapu J, Skelton A A. Non-linear Taft relationship applied to surface tensions of aliphatic acids: inter-molecular hydrogen bonding versus intra-molecular hydrogen bonding[J]. Journal of Molecular Liquids, 2016, 224: 43-46. |
39 | Jin H, Zhang Y S, Zhang M, et al. Molecular simulation study of the influence of different surfactants on the wetting characteristics of anthracite[J]. Arabian Journal of Chemistry, 2024, 17(3): 105637. |
40 | Guo J Y, Xia Y C, Liu Y T, et al. Microscopic adsorption behaviors of ionic surfactants on lignite surface and its effect on the wettability of lignite: a simulation and experimental study[J]. Journal of Molecular Liquids, 2022, 345: 117851. |
41 | Tao W H, Jiang B Y, Zheng Y N, et al. Molecular dynamics study on the effect of inorganic salts on the wettability of surfactants on bituminous coal: sodium dodecyl sulfate and sodium chloride as representatives[J]. Fuel, 2024, 359: 130397. |
[1] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
[2] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[5] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[6] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[7] | Hailin JIA, Bo CUI, Nan CHEN, Yongqin YANG, Qingyin WANG, Fumin ZHU. Foam performance analysis of fluorine-free foam modified by low carbon alcohol and experimental study on extinguishing oil pool fire [J]. CIESC Journal, 2022, 73(9): 4235-4244. |
[8] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[9] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[10] | Guoda HE, Rui TANG, Xuezhi DUAN, Leidong XIE, Jie FU, Jianxing DAI, Yuan QIAN, Jianqiang WANG. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt [J]. CIESC Journal, 2020, 71(8): 3565-3574. |
[11] | Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation [J]. CIESC Journal, 2020, 71(4): 1822-1827. |
[12] | Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431. |
[13] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
[14] | He ZHENG, Shengjiang YANG, Yongchao ZHENG, Yan CUI, Xuan GUO, Jinyi ZHONG, Jian ZHOU. Molecular dynamics simulation of denaturation of DhaA induced by urea and dimethyl sulfoxide [J]. CIESC Journal, 2019, 70(11): 4337-4345. |
[15] | QI Chang, LU Diannan, LIU Yongmin. Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field [J]. CIESC Journal, 2018, 69(8): 3338-3347. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||