CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3815-3824.DOI: 10.11949/0438-1157.20240355
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Na XU1(), Zixuan LI1, Zilu LIU2, Yaodong LYU3, Shiwen ZHANG4
Received:
2024-03-29
Revised:
2024-06-11
Online:
2024-11-04
Published:
2024-10-25
Contact:
Na XU
通讯作者:
徐娜
作者简介:
徐娜(1983—),女,副教授,naxu_xjtu@163.com
基金资助:
CLC Number:
Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system[J]. CIESC Journal, 2024, 75(10): 3815-3824.
徐娜, 李子璇, 刘子璐, 吕耀东, 张释文. 溶液环境对液相纳米颗粒体系分散稳定性的影响[J]. 化工学报, 2024, 75(10): 3815-3824.
Fig.8 Cross section of SMA system with different concentrations (embellishment to expand diameter of nanoparticle bead to twice diameter was performed for clarity of view)
1 | Hong R Y, Li J H, Chen L L, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles[J]. Powder Technology, 2009, 189(3): 426-432. |
2 | Munkhbayar B, Tanshen M R, Jeoun J, et al. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics[J]. Ceramics International, 2013, 39(6): 6415-6425. |
3 | Zhu Q L, Xu Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications[J]. Chem, 2016, 1(2): 220-245. |
4 | Huang X H, El-Sayed M A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy[J]. Journal of Advanced Research, 2010, 1(1): 13-28. |
5 | Alatraktchi F A, Zhang Y F, Angelidaki I. Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community[J]. Applied Energy, 2014, 116: 216-222. |
6 | Rümenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics[J]. Pharmaceutical Research, 2012, 29(5): 1165-1179. |
7 | Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications[J]. New Journal of Chemistry, 1998, 22(11): 1179-1201. |
8 | Li F Y, Lu J X, Kong X Q, et al. Dynamic nanoparticle assemblies for biomedical applications[J]. Advanced Materials, 2017, 29(14): 1605897. |
9 | Anto R, Deshmukh S, Sanyal S, et al. Nanoparticles as flow improver of petroleum crudes: study on temperature-dependent steady-state and dynamic rheological behavior of crude oils[J]. Fuel, 2020, 275: 117873. |
10 | Lu J, Liu D, Yang X, et al. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation[J]. Applied Surface Science, 2015, 357: 1114-1121. |
11 | Yang J J, Tang B T, Qiu W Z, et al. Controlled dispersion and precipitation of carbon black by a pH-responsive polyampholyte containing amino groups and aryl sulfonates[J]. Carbon, 2012, 50(15): 5621-5624. |
12 | Kamiya H, Gotoh K, Shimada M, et al. Characteristics and behavior of nanoparticles and its dispersion systems[M]//Nanoparticle Technology Handbook. Oxford: Elsevier, 2008: 113-176. |
13 | 白福顺, 张霞, 田安丽, 等. 苯乙烯-马来酸酐共聚物阳离子化改性及其在颜料分散中的应用[J]. 精细化工, 2011, 28(12): 1164-1168, 1172. |
Bai F S, Zhang X, Tian A L, et al. Modification of SMA using epoxypropyl trimethyl ammonium chloride and its application for carbon black dispersing[J]. Fine Chemicals, 2011, 28(12): 1164-1168, 1172. | |
14 | 姜东, 王朝生, 江振林, 等. 不同结构分散剂对颜料炭黑分散稳定性的影响[J]. 过程工程学报, 2015, 15(1): 153-158. |
Jiang D, Wang C S, Jiang Z L, et al. Influences of dispersants with different structures on the dispersibility of carbon black[J]. The Chinese Journal of Process Engineering, 2015, 15(1): 153-158. | |
15 | Azadgoleh J E, Kharrat R, Barati N, et al. Stability of silica nanoparticle dispersion in brine solution: an experimental study[J]. Iranian Journal of Oil & Gas Science and Technology, 2014, 3(4): 26-40. |
16 | Iijima M, Yamazaki M, Nomura Y, et al. Effect of structure of cationic dispersants on stability of carbon black nanoparticles and further processability through layer-by-layer surface modification[J]. Chemical Engineering Science, 2013, 85: 30-37. |
17 | Fatehah M O, Aziz H A, Stoll S. Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects[J]. Journal of Colloid Science and Biotechnology, 2014, 3(1): 75-84. |
18 | 吴丽冉, 王营超, 刘姗姗, 等. 木质素纳米颗粒的可控制备及应用进展[J]. 中国造纸, 2021, 40(4): 73-84. |
Wu L R, Wang Y C, Liu S S, et al. Controllable preparation of lignin nanoparticle and its application[J]. China Pulp & Paper, 2021, 40(4): 73-84. | |
19 | 卢艳敏, 崔海信, 崔金辉, 等. 磁性纳米颗粒作为基因转染载体的研究[J]. 生物技术通报, 2012(8): 199-204. |
Lu Y M, Cui H X, Cui J H, et al. Study on magnetic nanoparticles as carriers for gene transfection[J]. Biotechnology Bulletin, 2012(8): 199-204. | |
20 | Metin C O, Lake L W, Miranda C R, et al. Stability of aqueous silica nanoparticle dispersions[J]. Journal of Nanoparticle Research, 2011, 13(2): 839-850. |
21 | 王照亮, 唐大伟, 郑兴华, 等. 利用3ω法同时测量纳米流体热导率和热扩散系数[J]. 化工学报, 2007, 58(10): 2462-2468. |
Wang Z L, Tang D W, Zheng X H, et al. Simultaneous measurements of thermal conductivity and thermal diffusivity of nanofluids using 3ω method[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2462-2468. | |
22 | 秦睿, 郑立飞, 王力, 等. 介质pH及离子强度对纳米SiO2颗粒分散度的影响机制初探[J]. 西北农林科技大学学报(自然科学版), 2016, 44(3): 89-95. |
Qin R, Zheng L F, Wang L, et al. Effects of aqueous pH and ion strength on dispersity of nano-SiO2 particles[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(3): 89-95. | |
23 | Doblas D, Kister T, Cano-Bonilla M, et al. Colloidal solubility and agglomeration of apolar nanoparticles in different solvents[J]. Nano Letters, 2019, 19(8): 5246-5252. |
24 | Lee J, Bae J, Kim W, et al. A study on aqueous dispersing of carbon black nanoparticles surface-coated with styrene maleic acid (SMA) copolymer[J]. Polymers, 2022, 14(24): 5455. |
25 | Dan L Y, Zhang K, Wang Q, et al. Surface modification boosts dispersion stability of nanoparticles in dielectric fluids[J]. Journal of Industrial and Engineering Chemistry, 2024, 132: 518-528. |
26 | Liu J, Gao Y Y, Cao D P, et al. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation[J]. Langmuir, 2011, 27(12): 7926-7933. |
27 | Koparde V N, Cummings P T. Molecular dynamics simulation of titanium dioxide nanoparticle sintering[J]. The Journal of Physical Chemistry B, 2005, 109(51): 24280-24287. |
28 | 生丽莎, 陈振乾. 纳米流体中纳米颗粒分散性能的分子动力学模拟[J]. 东南大学学报(自然科学版), 2021, 51(4): 700-706. |
Sheng L S, Chen Z Q. Molecular dynamics simulation of dispersion property of nanoparticles in nanofluids[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 700-706. | |
29 | Xu N, Liu Z L, Lv Y D, et al. Improved coarse-grained model for nanoparticles based on the martini force field and its application in molecular dynamics simulation on gel ink[J]. Langmuir, 2022, 38(46): 14172-14184. |
30 | Marrink S J, Risselada H J, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations[J]. The Journal of Physical Chemistry B, 2007, 111(27): 7812-7824. |
31 | 刘子璐. 多尺度液相纳米颗粒体系分散稳定性粗粒化分子动力学模拟[D]. 太原: 太原理工大学, 2023. |
Liu Z L. Coarse-grained molecular dynamics simulation on the dispersion stability of multi-scale nanoparticle liquid system[D]. Taiyuan: Taiyuan University of Technology, 2023. | |
32 | van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
33 | Stukowski A. Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool[J]. Modelling Simul. Mater. Sci. Eng., 2010, 18(1): 015012. |
34 | Wang P, Pei S, Wang M H, et al. Study on the transformation from linear to branched wormlike micelles: an insight from molecular dynamics simulation[J]. Journal of Colloid and Interface Science, 2017, 494: 47-53. |
[1] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[2] | Yan YANG, Yali GUO, Shuowen YU, Bonian PAN, Shengqiang SHEN. Calculation and analysis of thermal performance of liquid ammonia ejection pumps [J]. CIESC Journal, 2024, 75(6): 2134-2142. |
[3] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[4] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[5] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[6] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[7] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[8] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
[9] | Yue PAN, Xiangyang LIU, Yichen HUANG, Jiangtao LI, Li QIU, Ruifeng LI, Sha LI, Xiaoliang YAN. Influence of distance between Ni/Al2O3 and ZnO for deep hydrogenation of sulfur-containing phenanthrene [J]. CIESC Journal, 2024, 75(10): 3548-3556. |
[10] | Juhui CHEN, Ran AN, Dan LI, Haoming GAO, Kun ZHANG. Effect of van der Waals forces on the motion of magnetic field fluidized nanoparticles [J]. CIESC Journal, 2024, 75(10): 3518-3527. |
[11] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[12] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[15] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||