CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1822-1827.DOI: 10.11949/0438-1157.20191110
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zepei YU1(),Yanhui FENG1,2(
),Daili FENG1,2,Xinxin ZHANG1,2
Received:
2019-10-07
Revised:
2019-12-16
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yanhui FENG
通讯作者:
冯妍卉
作者简介:
于泽沛(1992—),男,博士研究生,基金资助:
CLC Number:
Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation[J]. CIESC Journal, 2020, 71(4): 1822-1827.
于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
1 | Feng D, Feng Y, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605. |
2 | Sinha-Ray S, Sahu R P, Yarin A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823-8827. |
3 | Xu Q, Feng J, Zhang S. Combined effects of different temperature and pressure loads on the “L”-type large-diameter buried pipeline[J]. International Journal of Heat and Mass Transfer, 2017, 111: 953-961. |
4 | Feng D, Feng Y, Zang Y, et al. Phase change in modified metal organic frameworks MIL-101 (Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132. |
5 | Chen J, Zhang G, Li B. How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?[J]. Physics Letters A, 2010, 374(23): 2392-2396. |
6 | Jiang F, Zhang L, Jiang Z, et al. Diatomite-based porous ceramics with high apparent porosity: pore structure modification using calcium carbonate[J]. Ceramics International, 2019, 45(5): 6085-6092. |
7 | Xu Q, Feng J, Zhang S. Influence of end side displacement load on stress and deformation of “L”-type large-diameter buried pipe network[J]. Applied Thermal Engineering, 2017, 126: 245-254. |
8 | Jiang F, Li Y, Zhao L, et al. Novel ceramics prepared from inferior clay rich in CaO and Fe2O3: properties, crystalline phases evolution and densification process[J]. Applied Clay Science, 2017, 143: 199-204. |
9 | Xu Q, Feng J. Analysis of nozzle gas speed on the performance of the zoned and staged gas-fired radiant tube[J]. Applied Thermal Engineering, 2017, 118: 734-741. |
10 | Jiang F, Zhang L, Mukiza E, et al. Formation mechanism of high apparent porosity ceramics prepared from fly ash cenosphere[J]. Journal of Alloys and Compounds, 2018, 749: 750-757. |
11 | Jiang F, Zhang L, She X, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019: 109539. |
12 | Tang J, Yang M, Dong W, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114. |
13 | Cui L, Feng Y, Zhang X. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules[J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27520-27526. |
14 | Liu B, Baimova J A, Reddy C D, et al. Interface thermal conductance and rectification in hybrid graphene/silicene monolayer[J]. Carbon, 2014, 79: 236-244. |
15 | Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: a molecular dynamics study[J]. Carbon, 2013, 63: 460-470. |
16 | Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170. |
17 | Fan Z, Yan J, Zhi L, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010, 22(33): 3723-3728. |
18 | Dong X, Chen J, Ma Y, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48(86): 10660-10662. |
19 | Lee J, Varshney V, Brown J S, et al. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure[J]. Applied Physics Letters, 2012, 100(18): 183111. |
20 | Park J, Prakash V. Thermal transport in 3D pillared SWCNT-graphene nanostructures[J]. Journal of Materials Research, 2013, 28(7): 940-951. |
21 | Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture[J]. Advanced Energy Materials, 2012, 2(4): 438-444. |
22 | Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769. |
23 | Dongmei Z, Zhenwei L, Lingdi L, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72(2): 185-200. |
24 | Loh G C, Teo E H T, Tay B K. Tuning the Kapitza resistance in pillared-graphene nanostructures[J]. Journal of Applied Physics, 2012, 111(1): 013515. |
25 | Loh G C, Teo E H T, Tay B K. Interpillar phononics in pillared-graphene hybrid nanostructures[J]. Journal of Applied Physics, 2011, 110(8): 083502. |
26 | Kamaliya R, Singh B P, Gupta B K, et al. Large scale production of three dimensional carbon nanotube pillared graphene network for bi-functional optical properties[J]. Carbon, 2014, 78: 147-155. |
27 | Zhang Z, Kutana A, Roy A, et al. Nanochimneys: topology and thermal conductance of 3D nanotube-graphene cone junctions[J]. The Journal of Physical Chemistry C, 2017, 121(2): 1257-1262. |
28 | Thiyagarajan P, Oh M W, Yoon J C, et al. Thermoelectric properties of nanoporous three-dimensional graphene networks[J]. Applied Physics Letters, 2014, 105(3): 033905. |
29 | Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566. |
30 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
31 | Liu Y, Feng Y, Huang Z, et al. Thermal conductivity of 3D boron-based covalent organic frameworks from molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2016, 120(30): 17060-17068. |
32 | Zhang J, Feng Y, Yuan H, et al. Thermal properties of C17H36/MCM-41 composite phase change materials[J]. Computational Materials Science, 2015, 109: 300-307. |
33 | Tretiakov K V, Scandolo S. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study[J]. The Journal of Chemical Physics, 2004, 121(22): 11177-11182. |
34 | Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling[J]. Physical Review B, 2006, 74(12): 125403. |
35 | Loong C K, Vashishta P, Kalia R K, et al. Phonon density of states and oxygen-isotope effect in Ba1-xKxBiO3[J]. Physical Review B, 1992, 45(14): 8052. |
36 | Zhang X, Jiang J. Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18441-18447. |
37 | Amirjalayer S, Snurr R Q, Schmid R. Prediction of structure and properties of boron-based covalent organic frameworks by a first-principles derived force field[J]. The Journal of Physical Chemistry C, 2012, 116(7): 4921-4929. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[5] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[6] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[7] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[8] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[9] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[10] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[11] | Mengyu LI, Dongxiang WANG, Xiaoyang ZHENG, Guizhuan XU, Chaojun DU, Chun CHANG. Preparation and adsorption properties of crude glycerol bio-based polyurethane material [J]. CIESC Journal, 2022, 73(5): 2270-2278. |
[12] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[13] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[14] | LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20. |
[15] | SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve [J]. CIESC Journal, 2021, 72(6): 3306-3315. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 711
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 544
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||