CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3568-3578.DOI: 10.11949/0438-1157.20240475
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhiyi YU(), Junyan FANG, Wenyao CHEN, Gang QIAN(
), Xuezhi DUAN
Received:
2024-04-29
Revised:
2024-06-06
Online:
2024-11-04
Published:
2024-10-25
Contact:
Gang QIAN
通讯作者:
钱刚
作者简介:
于志奕(1998—),男,硕士研究生,hoodyu5937@163.com
基金资助:
CLC Number:
Zhiyi YU, Junyan FANG, Wenyao CHEN, Gang QIAN, Xuezhi DUAN. Regulation of Pt-Bi interfaces for selective catalytic oxidation of glycerol[J]. CIESC Journal, 2024, 75(10): 3568-3578.
于志奕, 方俊彦, 陈文尧, 钱刚, 段学志. Pt-Bi界面结构调控及其催化甘油选择性氧化反应性能[J]. 化工学报, 2024, 75(10): 3568-3578.
27 | Sun Y H, Yu Z Y, Chen W Y, et al. PtBi intermetallic compounds with enhanced stability towards base-free selective oxidation of glycerol[J]. Industrial & Engineering Chemistry Research, 2023, 62(43): 17503-17512. |
28 | Ning X M, Li Y H, Yu H, et al. Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone[J]. Journal of Catalysis, 2016, 335: 95-104. |
29 | Nie R F, Liang D, Shen L, et al. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 127: 212-220. |
30 | Duan X Z, Zhang Y F, Pan M J, et al. SbO x -promoted Pt nanoparticles supported on CNTs as catalysts for base-free oxidation of glycerol to dihydroxyacetone[J]. AIChE Journal, 2018, 64(11): 3979-3987. |
31 | Kimura H, Tsuto K, Wakisaka T, et al. Selective oxidation of glycerol on a platinum-bismuth catalyst[J]. Applied Catalysis A: General, 1993, 96(2): 217-228. |
32 | van der Wijst C, Duan X Z, Skeie Liland I, et al. ZnO-carbon-nanotube composite supported nickel catalysts for selective conversion of cellulose into vicinal diols[J]. ChemCatChem, 2015, 7(18): 2991-2999. |
33 | Yao C, Li W H, Li Y R, et al. Atomically dispersed Pt to boost adjacent frustrated Lewis pair for 2,6-diamino-3,5-dinitropyridine hydrogenation[J]. AIChE Journal, 2024, 70(2): e18278. |
34 | Li Y R, Cao Y Q, Ge X H, et al. Pt-O4 moiety induced electron localization toward In2O-triggered acetylene semi-hydrogenation[J]. Journal of Catalysis, 2022, 407: 290-299. |
35 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186. |
36 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
37 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
38 | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
1 | Hu X Y, Lu J, Liu Y, et al. Sustainable catalytic oxidation of glycerol: a review[J]. Environmental Chemistry Letters, 2023, 21(5): 2825-2861. |
2 | Johnson D T, Taconi K A. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production[J]. Environmental Progress, 2007, 26(4): 338-348. |
3 | Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catalysis, 2018, 8(7): 6301-6333. |
4 | Lucas F W S, Grim R G, Tacey S A, et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application[J]. ACS Energy Letters, 2021, 6(4): 1205-1270. |
5 | Pagliaro M, Ciriminna R, Kimura H, et al. From glycerol to value-added products[J]. Angewandte Chemie International Edition, 2007, 46(24): 4434-4440. |
6 | Anitha M, Kamarudin S K, Kofli N T. The potential of glycerol as a value-added commodity[J]. Chemical Engineering Journal, 2016, 295: 119-130. |
7 | Tan H W, Abdul Aziz A R, Aroua M K. Glycerol production and its applications as a raw material: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 118-127. |
8 | Koranian P, Huang Q, Dalai A K, et al. Chemicals production from glycerol through heterogeneous catalysis: a review[J]. Catalysts, 2022, 12(8): 897. |
9 | Pirzadi Z, Meshkani F. From glycerol production to its value-added uses: a critical review[J]. Fuel, 2022, 329: 125044. |
10 | Ciriminna R, Fidalgo A, Ilharco L M, et al. Dihydroxyacetone: an updated insight into an important bioproduct[J]. ChemistryOpen, 2018, 7(3): 233-236. |
11 | Bricotte L, Chougrani K, Alard V, et al. Dihydroxyacetone: a user guide for a challenging bio-based synthon[J]. Molecules, 2023, 28(6): 2724. |
12 | 何珊, 王玮璐, 彭香, 等. 多相催化生物甘油选择性氧化制取1,3-二羟基丙酮的研究进展[J]. 分子催化, 2022, 36(6): 571-583. |
He S, Wang W L, Peng X, et al. Research progress of selective oxidation of glycerol to 1,3-dihydroxyacetone by heterogeneous catalysis[J]. Journal of Molecular Catalysis (China), 2022, 36(6): 571-583. | |
13 | Feng S X, Yi J, Miura H, et al. Experimental and theoretical investigation of the role of bismuth in promoting the selective oxidation of glycerol over supported Pt-Bi catalyst under mild conditions[J]. ACS Catalysis, 2020, 10: 6071-6083. |
39 | Kästner J, Sherwood P. Superlinearly converging dimer method for transition state search[J]. The Journal of Chemical Physics, 2008, 128(1): 014106. |
40 | Gan J, Zhang J K, Zhang B Y, et al. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition[J]. Journal of Energy Chemistry, 2020, 45: 59-66. |
41 | O'Neill B J, Jackson D H K, Lee J, et al. Catalyst design with atomic layer deposition[J]. ACS Catalysis, 2015, 5(3): 1804-1825. |
42 | Borodziński A, Bonarowska M. Relation between crystallite size and dispersion on supported metal catalysts[J]. Langmuir, 1997, 13(21): 5613-5620. |
43 | van Hardeveld R, Hartog F. The statistics of surface atoms and surface sites on metal crystals[J]. Surface Science, 1969, 15(2): 189-230. |
44 | Chen W Y, Ji J, Feng X, et al. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Journal of the American Chemical Society, 2014, 136(48): 16736-16739. |
14 | Yang L H, Li X W, Chen P, et al. Selective oxidation of glycerol in a base-free aqueous solution: a short review[J]. Chinese Journal of Catalysis, 2019, 40(7): 1020-1034. |
15 | Zhou C H, Zhao H, Tong D S, et al. Recent advances in catalytic conversion of glycerol[J]. Catalysis Reviews-Science and Engineering, 2013, 55(4): 369-453. |
16 | He Z Y, Ning X M, Yang G X, et al. Selective oxidation of glycerol over supported noble metal catalysts[J]. Catalysis Today, 2021, 365: 162-171. |
17 | Walgode P M, Faria R P V, Rodrigues A E. A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone[J]. Catalysis Reviews, 2021, 63(3): 422-511. |
18 | 柯义虎, 朱春梅, 李景云, 等. 过渡金属改性氮掺杂多孔碳负载Pt催化甘油氧化制备甘油酸[J]. 生物质化学工程, 2023, 57(2): 29-40. |
Ke Y H, Zhu C M, Li J Y, et al. Catalytic oxidation of glycerol to glyceric acid over transition metal modified nitrogened-doped porous carbon supported Pt catalyst[J]. Biomass Chemical Engineering, 2023, 57(2): 29-40. | |
19 | 董华, 雷佳契, 段学志, 等. 炭载Pt基催化剂上甘油氧化反应路径的探究[J]. 化学反应工程与工艺, 2016, 32(3): 217-223. |
Dong H, Lei J Q, Duan X Z, et al. Reaction pathways for glycerol oxidation over carbon nanotubes supported Pt based catalysts[J]. Chemical Reaction Engineering and Technology, 2016, 32(3): 217-223. | |
20 | Ma Y Y, Gan J, Pan M J, et al. Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol[J]. Chemical Engineering Science, 2019, 203: 228-236. |
21 | Li T Y, Harrington D A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au[J]. ChemSusChem, 2021, 14(6): 1472-1495. |
22 | Lei J Q, Duan X Z, Qian G, et al. Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16309-16315. |
23 | Lei J Q, Dong H, Duan X Z, et al. Insights into activated carbon-supported platinum catalysts for base-free oxidation of glycerol[J]. Industrial & Engineering Chemistry Research, 2016, 55(2): 420-427. |
24 | Chen W Y, Wang J N, Zhang Y F, et al. Kinetics decoupling activity and selectivity of Pt nanocatalyst for enhanced glycerol oxidation performance[J]. AIChE Journal, 2021, 67(10): e17339. |
25 | 雷佳契, 段学志, 钱刚, 等. 炭载体对Pt-C复合物非碱性条件下催化甘油氧化性能的影响[J]. 化工学报, 2017, 68(2): 679-686. |
Lei J Q, Duan X Z, Qian G, et al. Effects of carbon support on glycerol oxidation over Pt-C composite catalysts in base-free conditions[J]. CIESC Journal, 2017, 68(2): 679-686. | |
26 | Yang L H, He T Q, Lai C J, et al. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid[J]. Chinese Journal of Catalysis, 2020, 41(3): 494-502. |
[1] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
[2] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[3] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[4] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[5] | Yabin ZHANG, Yang SU, Huirong ZHANG, Yipeng SONG, Jian LI, Yanxia GUO. Mechanism of enhanced arsenic sulfide stabilization/solidification by using steel slag and carbide slag [J]. CIESC Journal, 2024, 75(7): 2656-2669. |
[6] | Xinxin XU, Yunli JI, Xianfeng WU, Xia AN, Xu WU. Hydrotalcite-derived CuMgFe-LDO catalyst for simultaneous abatement of nitrogen oxides and methanol [J]. CIESC Journal, 2024, 75(5): 1890-1902. |
[7] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[8] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[9] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[10] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[11] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[12] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[13] | Ruirui WANG, Ying JIN, Yumei LIU, Mengyue LI, Shengwen ZHU, Ruiyi YAN, Ruixia LIU. Study on design of polymeric ionic liquids and the performance for selective oxidation of cyclohexane [J]. CIESC Journal, 2024, 75(4): 1552-1564. |
[14] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
[15] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||