CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3557-3567.DOI: 10.11949/0438-1157.20240420
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wenjie CONG1(), Jiawen HUANG1, Xiaoqiang FAN1,2(
), Yao YANG1,3, Jingdai WANG1,3, Yongrong YANG1,3
Received:
2024-04-16
Revised:
2024-05-23
Online:
2024-11-04
Published:
2024-10-25
Contact:
Xiaoqiang FAN
从文杰1(), 黄嘉雯1, 范小强1,2(
), 杨遥1,3, 王靖岱1,3, 阳永荣1,3
通讯作者:
范小强
作者简介:
从文杰(1999—),男,硕士研究生,22128056@zju.edu.cn
基金资助:
CLC Number:
Wenjie CONG, Jiawen HUANG, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Structure optimization method for high-pressure LDPE tubular reactor[J]. CIESC Journal, 2024, 75(10): 3557-3567.
从文杰, 黄嘉雯, 范小强, 杨遥, 王靖岱, 阳永荣. 高压法LDPE管式反应器的结构优化方法[J]. 化工学报, 2024, 75(10): 3557-3567.
Fig.2 Variation of properties of mixed feedstock in LDPE tubular reactor: (a) density; (b) viscosity; (c) specific heat at constant pressure; (d) thermal conductivity
参数 | DTBP∶TBPB∶TBPEH(摩尔比) | ||
---|---|---|---|
1∶1∶1 | 1∶2∶2 | 1∶2∶4 | |
引发剂用量指数 | 1.000 | 1.327 | 1.762 |
乙烯摩尔转化率 | 0.30 | 0.30 | 0.30 |
Table 1 Effect of initiator’s formula on ethylene conversion and consumption of initiator
参数 | DTBP∶TBPB∶TBPEH(摩尔比) | ||
---|---|---|---|
1∶1∶1 | 1∶2∶2 | 1∶2∶4 | |
引发剂用量指数 | 1.000 | 1.327 | 1.762 |
乙烯摩尔转化率 | 0.30 | 0.30 | 0.30 |
参数 | 数值 |
---|---|
工业用电费用pe /(CNY/(kW·h)) | 0.95 |
反应器运行时间t/h | 7200 |
反应管费用系数Cr | 3 |
反应管密度ρr /(kg/m3) | 7900 |
压缩机进口压力p1,出口压力p2 /bar | 300,3000 |
Table 2 Main parameters and values in the objective function
参数 | 数值 |
---|---|
工业用电费用pe /(CNY/(kW·h)) | 0.95 |
反应器运行时间t/h | 7200 |
反应管费用系数Cr | 3 |
反应管密度ρr /(kg/m3) | 7900 |
压缩机进口压力p1,出口压力p2 /bar | 300,3000 |
基元反应 | 化学方程式 |
---|---|
引发剂分解(链引发) | |
链增长 | |
耦合终止 | |
歧化终止 | |
链转移至单体 | |
链转移至聚合物 | |
链转移至链转移剂 | |
β裂解 | |
链间转移 |
Table 3 Elementary reactions of free radical polymerization[31]
基元反应 | 化学方程式 |
---|---|
引发剂分解(链引发) | |
链增长 | |
耦合终止 | |
歧化终止 | |
链转移至单体 | |
链转移至聚合物 | |
链转移至链转移剂 | |
β裂解 | |
链间转移 |
基元反应 | 速率常数 | k0/(L/(mol·s)) | (Ea/R)/K | Va/(cm3/mol) |
---|---|---|---|---|
DTBP分解 | kDTBP | 2.00×1016 | 19846 | 10 |
TBPB分解 | kTBPB | 2.23×1016 | 18233 | 0 |
TBPEH分解 | kTBPEH | 1.63×1014 | 15167 | 4.9 |
链增长 | kp | 1.25×108 | 4061 | -19.7 |
链终止 | ktc= ktd | 1.25×109 | 503 | 13 |
链转移至单体 | ktm | 1.25×105 | 4061 | -19.7 |
链转移至聚合物 | ktp | 4.38×108 | 6606 | 4.4 |
链转移至链转移剂 | ktra | 2.62×107 | 5973 | -19.5 |
β裂解 | kβ | 1.292×107 s-1 | 5671 | -16.8 |
链间转移 | kbb | 7.8×108 s-1 | 5319 | -15.9 |
Table 4 Kinetic rate constants for initiator decomposition and ethylene homopolymerization[31]
基元反应 | 速率常数 | k0/(L/(mol·s)) | (Ea/R)/K | Va/(cm3/mol) |
---|---|---|---|---|
DTBP分解 | kDTBP | 2.00×1016 | 19846 | 10 |
TBPB分解 | kTBPB | 2.23×1016 | 18233 | 0 |
TBPEH分解 | kTBPEH | 1.63×1014 | 15167 | 4.9 |
链增长 | kp | 1.25×108 | 4061 | -19.7 |
链终止 | ktc= ktd | 1.25×109 | 503 | 13 |
链转移至单体 | ktm | 1.25×105 | 4061 | -19.7 |
链转移至聚合物 | ktp | 4.38×108 | 6606 | 4.4 |
链转移至链转移剂 | ktra | 2.62×107 | 5973 | -19.5 |
β裂解 | kβ | 1.292×107 s-1 | 5671 | -16.8 |
链间转移 | kbb | 7.8×108 s-1 | 5319 | -15.9 |
参数 | 数值 |
---|---|
进料温度Tin /℃ | 170~180 |
温度上升速率ΔTup /(℃/m) | 0.5~2.0 |
冷却水温度tin /℃ | 160~170 |
进料压力pin /MPa | 200~300 |
反应器内径di /m | 0.056 |
物料密度ρm /(kg/m3) | 510 |
物料比热容cp,m /(kJ/(kg·K)) | 2.88 |
物料热导率km/(W/(m·K)) | 0.19 |
物料黏度μm | 式(1) |
反应器段数n | 4 |
Table 5 Physical and reactor parameters
参数 | 数值 |
---|---|
进料温度Tin /℃ | 170~180 |
温度上升速率ΔTup /(℃/m) | 0.5~2.0 |
冷却水温度tin /℃ | 160~170 |
进料压力pin /MPa | 200~300 |
反应器内径di /m | 0.056 |
物料密度ρm /(kg/m3) | 510 |
物料比热容cp,m /(kJ/(kg·K)) | 2.88 |
物料热导率km/(W/(m·K)) | 0.19 |
物料黏度μm | 式(1) |
反应器段数n | 4 |
Fig.9 (a) Variation of conversion rate with heat transfer coefficient; (b) Variation of TAC x with heat transfer coefficient; (c) Variation of conversion rate with flow rate; (d) Variation of TAC x with flow rate
项目 | 转化率/% | 总长度/m | 第一反应区 长度/m | 第一冷却区 长度/m |
---|---|---|---|---|
设计值 | 34.0 | 1772 | 118 | 391 |
工业值 | 34.0 | 1800 | 120~160 | 400~460 |
Table 6 Comparison between design values and industrial values of tubular reactor structures
项目 | 转化率/% | 总长度/m | 第一反应区 长度/m | 第一冷却区 长度/m |
---|---|---|---|---|
设计值 | 34.0 | 1772 | 118 | 391 |
工业值 | 34.0 | 1800 | 120~160 | 400~460 |
1 | Mummudi Boopathy M B. A comprehensive dynamic model for high-pressure tubular low-density polyethylene (LDPE) reactors[D]. Ann Arbor: Iowa State University, 2006. |
2 | Katz S, Saidel G M. Moments of the size distribution in radical polymerization[J]. AIChE Journal, 1967, 13(2): 319-326. |
3 | Ehrlich P, Mortimer G A. Fundamentals of the free-radical polymerization of ethylene[M]// Advances in Polymer Science. Berlin/Heidelberg: Springer-Verlag, 2006: 386-448. |
4 | Hollar W, Ehrlich P. An improved model for temperature and conversion profiles in tubular high pressure polyethylene reactors[J]. Chemical Engineering Communications, 1983, 24(1/2/3): 57-70. |
5 | Azmi A, Aziz N. Effect of initiator concentration to low-density polyethylene production in a tubular reactor[J]. IOP Conference Series: Materials Science and Engineering, 2016, 162(1): 012023. |
6 | Small P A. The effects of crosslinking and chain scission on molecular weight distributions[J]. Journal of Polymer Science, 1955, 18(89): 431-435. |
7 | Scanlan J. Molecular weight distribution functions in random reactions of polymers[J]. Transactions of the Faraday Society, 1956, 52: 1286. |
8 | Asteasuain M, Brandolin A. Mathematical modeling of bivariate polymer property distributions using 2D probability generating functions. 1.Numerical inversion methods[J]. Macromolecular Theory and Simulations, 2010, 19(6): 342-359. |
9 | Dietrich M L, Sarmoria C, Brandolin A, et al. LDPE production in tubular reactors: comprehensive model for the prediction of the joint molecular weight-short (long) chain branching distributions[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4412-4424. |
10 | Lu J M, Zhang H D, Yang Y L. Monte Carlo simulation of kinetics and chain-length distribution in radical polymerization[J]. Macromolecular Theory and Simulations, 1993, 2(5): 747-760. |
11 | Tobita H. Molecular weight distribution in free radical polymerization with long-chain branching[J]. Journal of Polymer Science Part B: Polymer Physics, 1993, 31(10): 1363-1371. |
12 | Kim D M, Busch M, Hoefsloot H C J, et al. Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR[J]. Chemical Engineering Science, 2004, 59(3): 699-718. |
13 | Meimaroglou D, Kiparissides C. A novel stochastic approach for the prediction of the exact topological characteristics and rheological properties of highly-branched polymer chains[J]. Macromolecules, 2010, 43(13): 5820-5832. |
14 | Kiparissides C, Krallis A, Meimaroglou D, et al. From molecular to plant-scale modeling of polymerization processes: a digital high-pressure low-density polyethylene production paradigm[J]. Chemical Engineering & Technology, 2010, 33(11): 1754-1766. |
15 | Neuhaus E, Herrmann T, Vittorias I, et al. Modeling the polymeric microstructure of LDPE in tubular and autoclave reactors with a coupled deterministic and stochastic simulation approach[J]. Macromolecular Theory and Simulations, 2014, 23(7): 415-428. |
16 | Pladis P, Meimaroglou D, Kiparissides C. Prediction of the viscoelastic behavior of low-density polyethylene produced in high-pressure tubular reactors[J]. Macromolecular Reaction Engineering, 2015, 9(3): 271-284. |
17 | Wang J, Ren Y, Yang Y, et al. A graph theory assisted Monte Carlo algorithm for simulating the topology structure of LDPE and connection with molecular dynamics simulation[J]. AIChE Journal, 2023, 69(8): e18111. |
18 | Terrazas-Moreno S, Flores-Tlacuahuac A, Grossmann I E. Simultaneous design, scheduling, and optimal control of a methyl-methacrylate continuous polymerization reactor[J]. AIChE Journal, 2008, 54(12): 3160-3170. |
19 | Tobita H. Model-based reactor design in free-radical polymerization with simultaneous long-chain branching and scission[J]. Processes, 2015, 3(4): 731-748. |
20 | 李晓霞, 吴黎涛. 流化床聚合反应器分布器设计[J]. 石油化工设备技术, 2021, 42(3): 11-13. |
Li X X, Wu L T. Design of gas distributor in fluidized bed polymerization reactor[J]. Petrochemical Equipment Technology, 2021, 42(3): 11-13. | |
21 | 张雷鸣, 王靖岱, 阳永荣. 高压法聚乙烯管式反应器的数学模拟[J]. 浙江大学学报(工学版), 2011, 45(3): 551-556, 570. |
Zhang L M, Wang J D, Yang Y R. Mathematical modeling of a high-pressure ethylene polymerization tubular reactor[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(3): 551-556, 570. | |
22 | Donati G, Marini L, Marziano G, et al. Mathematical model of low density polyethylene tubular reactor[M]//ACS Symposium Series. Washington, D C: American Chemical Society, 1982: 579-590. |
23 | Yoon B J, Rhee H K. A study of the high pressure polyethylene tubular reactor[J]. Chemical Engineering Communications, 1985, 34(1/2/3/4/5/6): 253-265. |
24 | Buchelli A, Call M L, Brown A L, et al. Modeling fouling effects in LDPE tubular polymerization reactors. 1. Fouling thickness determination[J]. Industrial & Engineering Chemistry Research, 2005, 44(5): 1474-1479. |
25 | 冯霄, 何潮洪. 化工原理-下册[M]. 2版. 北京: 科学出版社, 2007. |
Feng X, He C H. Principles of Chemical Engineering-volume Ⅱ[M]. 2nd ed. Beijing: Science Press, 2007. | |
26 | 中国特种设备检测研究院, 浙江大学, 锅容标技术服务中心有限公司, 等. 超高压容器: [S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017: 88. |
China Special Equipment Inspection and Research Institute, Zhejiang University, Guorong Standard Technical Service Center Co., Ltd., et al. Ultra high pressure vessel: [S]. State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration, 2017: 88. | |
27 | Egloff G, Schaad R. Polymerization and explosive decomposition of ethylene under pressure [J]. Journal of Petroleum Technology, 1933, 19: 800. |
28 | Zhang S X, Read N K, Ray W H. Runaway phenomena in low-density polyethylene autoclave reactors[J]. AIChE Journal, 1996, 42(10): 2911-2925. |
29 | Joule J P, Thomson W. ⅬⅩⅩⅥ. On the thermal effects experienced by air in rushing through small apertures[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1852, 4(28): 481-492. |
30 | 郁永章, 姜培正, 孙嗣莹. 压缩机工程手册[M]. 北京: 中国石化出版社, 2012. |
Yu Y Z, Jiang P Z, Sun S Y. Compressor Engineering Manual[M]. Beijing: China Petrochemical Press, 2012. | |
31 | Pladis P, Kiparissides C. 110th anniversary: nonideal mixing phenomena in high-pressure low-density polyethylene autoclaves: prediction of variable initiator efficiency and ethylene decomposition[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13093-13111. |
32 | Chen C H, Vermeychuk J G, Howell J A, et al. Computer model for tubular high-pressure polyethylene reactors[J]. AIChE Journal, 1976, 22(3): 463-471. |
[1] | Liping ZHANG, Xiaorong MENG, Jinfeng SONG, Jinjing DU. Preparation of VO2@KH550/570@PS composite film and its thermally induced phase change properties [J]. CIESC Journal, 2024, 75(9): 3348-3359. |
[2] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
[3] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
[4] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[5] | Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor [J]. CIESC Journal, 2024, 75(4): 1302-1316. |
[6] | Yangke XIAO, Yinlong CHANG, Ping LI, Wenjun WANG, Bogeng LI, Pingwei LIU. Review on polyolefin elastomers with dynamic-chemical cross-linking [J]. CIESC Journal, 2024, 75(4): 1394-1413. |
[7] | Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization [J]. CIESC Journal, 2024, 75(4): 1118-1136. |
[8] | Na PAN, Chang TIAN, Lankun HUAI, Yuyu LIU, Fenfen ZHANG, Xiaomei GAO, Wei LIU, Liangguo YAN, Yanxia ZHAO. Synthesis and application of polymerized Al-Ti based flocculant [J]. CIESC Journal, 2024, 75(3): 1009-1018. |
[9] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[10] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[11] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[12] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[13] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[14] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[15] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||