CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3579-3587.DOI: 10.11949/0438-1157.20240352
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Hao ZHANG(), Min LIU(
), Xinwen GUO
Received:
2024-04-01
Revised:
2024-05-12
Online:
2024-11-04
Published:
2024-10-25
Contact:
Min LIU
通讯作者:
刘民
作者简介:
张昊(1999—),男,硕士研究生,2196596044@qq.com
基金资助:
CLC Number:
Hao ZHANG, Min LIU, Xinwen GUO. Preparation of ZSM-5 catalysts for MTP reaction by CTAB-assisted seeding method[J]. CIESC Journal, 2024, 75(10): 3579-3587.
张昊, 刘民, 郭新闻. CTAB辅助晶种法制备ZSM-5催化MTP反应[J]. 化工学报, 2024, 75(10): 3579-3587.
Sample | Si/Al molar ratio | SBET/(m2/g) | SMicro/ (m2/g) | SMeso/(m2/g) | VTotal/ (cm3/g) | VMicro/ (cm3/g) | VMeso/ (cm3/g) |
---|---|---|---|---|---|---|---|
Z5-0 | 291 | 353 | 318 | 35 | 0.32 | 0.13 | 0.19 |
Z5-1 | 288 | 410 | 375 | 34 | 0.33 | 0.15 | 0.18 |
Z5-2 | 270 | 478 | 437 | 41 | 0.34 | 0.18 | 0.17 |
Z5-3 | 290 | 439 | 386 | 53 | 0.32 | 0.16 | 0.15 |
Z5-4 | 303 | 418 | 370 | 48 | 0.29 | 0.15 | 0.14 |
Z5-5 | 277 | 395 | 366 | 30 | 0.26 | 0.14 | 0.12 |
Table 1 Pore structure and solid yield of samples with various CTAB/SiO2 molar ratios
Sample | Si/Al molar ratio | SBET/(m2/g) | SMicro/ (m2/g) | SMeso/(m2/g) | VTotal/ (cm3/g) | VMicro/ (cm3/g) | VMeso/ (cm3/g) |
---|---|---|---|---|---|---|---|
Z5-0 | 291 | 353 | 318 | 35 | 0.32 | 0.13 | 0.19 |
Z5-1 | 288 | 410 | 375 | 34 | 0.33 | 0.15 | 0.18 |
Z5-2 | 270 | 478 | 437 | 41 | 0.34 | 0.18 | 0.17 |
Z5-3 | 290 | 439 | 386 | 53 | 0.32 | 0.16 | 0.15 |
Z5-4 | 303 | 418 | 370 | 48 | 0.29 | 0.15 | 0.14 |
Z5-5 | 277 | 395 | 366 | 30 | 0.26 | 0.14 | 0.12 |
Sample | Total acidity/(μmol/g) | Weak acidity/(μmol/g) | Strong acidity/(μmol/g) |
---|---|---|---|
Z5-0 | 36 | 23 | 13 |
Z5-1 | 60 | 38 | 22 |
Z5-2 | 76 | 46 | 30 |
Z5-3 | 78 | 44 | 34 |
Z5-4 | 70 | 43 | 27 |
Z5-5 | 68 | 41 | 27 |
Table 2 Acid amount of samples with various CTAB/SiO2 molar ratios
Sample | Total acidity/(μmol/g) | Weak acidity/(μmol/g) | Strong acidity/(μmol/g) |
---|---|---|---|
Z5-0 | 36 | 23 | 13 |
Z5-1 | 60 | 38 | 22 |
Z5-2 | 76 | 46 | 30 |
Z5-3 | 78 | 44 | 34 |
Z5-4 | 70 | 43 | 27 |
Z5-5 | 68 | 41 | 27 |
Catalysts | Methanol conversion/% | Selectivity/% | P/E | |||||
---|---|---|---|---|---|---|---|---|
CH4 | C2H4 | C3H6 | C2=~C4= | C2 ~C4 | C6+ | |||
Z5-0 | 62.3 | 1.7 | 1.7 | 26.4 | 34.9 | 15.1 | 17.3 | 15.2 |
Z5-1 | 95.7 | 0.3 | 1.4 | 38.5 | 55.1 | 10.2 | 17.5 | 27.5 |
Z5-2 | 99.7 | 0.4 | 3.2 | 47.6 | 69.1 | 7.5 | 9.0 | 14.9 |
Z5-3 | 97.0 | 0.3 | 2.4 | 44.1 | 60.2 | 6.7 | 14.4 | 18.4 |
Z5-4 | 97.7 | 0.2 | 2.4 | 42.8 | 60.4 | 7.1 | 14.8 | 17.8 |
Z5-5 | 95.9 | 0.3 | 2.6 | 41.7 | 59.3 | 6.8 | 15.0 | 16.0 |
Table 3 Average methanol conversion and product selectivity of samples with various CTAB/SiO2 molar ratios
Catalysts | Methanol conversion/% | Selectivity/% | P/E | |||||
---|---|---|---|---|---|---|---|---|
CH4 | C2H4 | C3H6 | C2=~C4= | C2 ~C4 | C6+ | |||
Z5-0 | 62.3 | 1.7 | 1.7 | 26.4 | 34.9 | 15.1 | 17.3 | 15.2 |
Z5-1 | 95.7 | 0.3 | 1.4 | 38.5 | 55.1 | 10.2 | 17.5 | 27.5 |
Z5-2 | 99.7 | 0.4 | 3.2 | 47.6 | 69.1 | 7.5 | 9.0 | 14.9 |
Z5-3 | 97.0 | 0.3 | 2.4 | 44.1 | 60.2 | 6.7 | 14.4 | 18.4 |
Z5-4 | 97.7 | 0.2 | 2.4 | 42.8 | 60.4 | 7.1 | 14.8 | 17.8 |
Z5-5 | 95.9 | 0.3 | 2.6 | 41.7 | 59.3 | 6.8 | 15.0 | 16.0 |
Fig.6 Correlation of propylene selectivity with strong acid amount, weak acid amount and total acid amount of samples with various CTAB/SiO2 molar ratios
1 | 谭捷. 我国丙烯的供需现状及发展前景[J]. 精细与专用化学品, 2019, 27(11): 13-15. |
Tan J. Supply and demand situation and development prospect of propylene in China[J]. Fine and Specialty Chemicals, 2019, 27(11): 13-15. | |
2 | 林玉霞, 徐德义, 李芳, 等. 甲醇制丙烯过程研究进展[J]. 化学反应工程与工艺, 2021, 37(4): 363-374. |
Lin Y X, Xu D Y, Li F, et al. Recent advances of the methanol to propylene reaction[J]. Chemical Reaction Engineering and Technology, 2021, 37(4): 363-374. | |
3 | 王峰, 张伟, 雍晓静, 等. Lurgi甲醇制丙烯技术的工业应用[J]. 石油炼制与化工, 2014, 45(3): 46-50. |
Wang F, Zhang W, Yong X J, et al. Commercial application of Lurgi MTP technology[J]. Petroleum Processing and Petrochemicals, 2014, 45(3): 46-50. | |
4 | Ahmadpour J, Taghizadeh M. Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 184-194. |
5 | Mohamed H O, Parsapur R K, Hita I, et al. Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked[J]. Applied Catalysis B: Environmental, 2022, 316: 121582. |
6 | Gyungah P, Jeongmee K, Seon-Ju P, et al. Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction[J]. Molecular Catalysis, 2022, 531: 112702. |
7 | Chu Y Y, Yi X F, Li C B, et al. Brønsted/Lewis acid sites synergistically promote the initial C—C bond formation in the MTO reaction[J]. Chemical Science, 2018, 9(31): 6470-6479. |
8 | Jin R, Ma K, Xu S, et al. Effect of acid distribution and pore structure of ZSM-5 on catalytic performance[J]. Reaction Chemistry & Engineering, 2022, 7(10): 2152-2162. |
9 | Zhao Y N, Fan S B, Ma Q X, et al. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 210-217. |
10 | Zhu Q J, Kondo J N, Setoyama T, et al. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chemical Communications, 2008(41): 5164-5166. |
11 | Liu M, Cui T, Guo X W, et al. Stable Zn@ZSM-5 catalyst via a dry gel conversion process for methanol-to-aromatics reaction[J]. Microporous and Mesoporous Materials, 2021, 312: 110696. |
12 | Chen K, Wu X Q, Zhao J Y, et al. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes[J]. Journal of Catalysis, 2022, 413: 735-750. |
13 | Tuo J, Fan S B, Yang N W, et al. Direct synthesis of [B, H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction[J]. Catalysis Science & Technology, 2020, 10(20): 7034-7045. |
14 | Liu J, Zhang C X, Shen Z H, et al. Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catalysis Communications, 2009, 10(11): 1506-1509. |
15 | Weissenberger T, Reiprich B, Machoke A G F, et al. Hierarchical MFI type zeolites with intracrystalline macropores: the effect of the macropore size on the deactivation behaviour in the MTO reaction[J]. Catalysis Science & Technology, 2019, 9(12): 3259-3269. |
16 | Wang S, Chen Y, Wei Z, et al. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite[J]. The Journal of Physical Chemistry C, 2015, 119(51): 28482-28498. |
17 | Liu Z Q, Chu Y Y, Tang X M, et al. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22872-22882. |
18 | Li J J, Liu M, Li S S, et al. Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction[J]. Ind. Eng. Chem. Res., 2019, 58 (5): 1896-1905. |
19 | Li W Q, Li Y F, Liu Z Q, et al. Pore-confined and diffusion-dependent olefin catalytic cracking for the production of propylene over SAPO zeolites[J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 7760-7776. |
20 | Wu Q M, Luan H M, Xiao F S. Theoretical design for zeolite synthesis[J]. Science China Chemistry, 2022, 65(9): 1683-1690. |
21 | Shang Z Y, Chen Y, Zhang L J, et al. Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short b-axis length for catalyzing MTO reactions[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1456-1466. |
22 | Hamidzadeh M, Saeidi M, Komeili S. Modified seeding method to produce hierarchical nanocrystalline ZSM-5 zeolite[J]. Materials Today Communications, 2020, 25: 101308. |
23 | Chen Z W, Li Z, Zhang Y, et al. A green route for the synthesis of nano-sized hierarchical ZSM-5 zeolite with excellent DTO catalytic performance[J]. Chemical Engineering Journal, 2020, 388: 124322. |
24 | Chen L H, Sun M H, Wang Z, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
25 | Li J J, Liu M, Guo X W, et al. Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26096-26106. |
26 | Chen K, Zhao J Y, Li A H, et al. Realumination of dealuminated HZSM-5 zeolites by acid treatment, the impact of AlF distribution and its catalytic cracking performance of alkanes[J]. Microporous and Mesoporous Materials, 2022, 338: 111969. |
27 | Yousef S, Eimontas J, Striūgas N, et al. Catalytic pyrolysis and kinetic study of glass fibre-reinforced epoxy resin over CNTs, graphene and carbon black particles/ZSM-5 zeolite hybrid catalysts[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(3): 897-912. |
28 | Sachse A, García-Martínez J. Surfactant-templating of zeolites: from design to application[J]. Chemistry of Materials, 2017, 29(9): 3827-3853. |
29 | Huang L M, Guo W P, Deng P, et al. Investigation of synthesizing MCM-41/ZSM-5 composites[J]. The Journal of Physical Chemistry B, 2000, 104(13): 2817-2823. |
30 | Xue T, Liu H P, Zhang Y, et al. Synthesis of ZSM-5 with hierarchical porosity: in-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite[J]. Microporous and Mesoporous Materials, 2017, 242: 190-199. |
31 | Zhang Y C, Zhu K K, Duan X Z, et al. Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate[J]. RSC Advances, 2014, 4(28): 14471-14474. |
32 | Chen H B, Wang Y Q, Sun C, et al. Aggregates of nano-sized ZSM-5 crystals synthesized with template-free and alkali-treated seeds for improving the catalytic performance in MTP reaction[J]. Catalysis Communications, 2017, 100: 107-111. |
33 | Sun L Y, Wang Y Q, Chen H B, et al. Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction[J]. Catalysis Today, 2018, 316: 91-98. |
34 | Xu D D, Feng J, Che S N. An insight into the role of the surfactant CTAB in the formation of microporous molecular sieves[J]. Dalton Transactions, 2014, 43(9): 3612-3617. |
35 | Zhang W M, Hao W M, Guo Y N, et al. A surfactant-directe sol-gel evolution in the formation of hierarchical zeolite beta[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 689: 133720. |
36 | Velaga B, Doley R, Peela N R. Rapid synthesis of hierarchical ZSM-5 zeolites for the reactions involving larger reactant molecules[J]. Advanced Powder Technology, 2021, 32(4): 1033-1046. |
37 | Razavian M, Fatemi S. Synthesis and evaluation of seed-directed hierarchical ZSM-5 catalytic supports: inductive influence of various seeds and aluminosilicate gels on the physicochemical properties and catalytic dehydrogenative behavior[J]. Materials Chemistry and Physics, 2015, 165: 55-65. |
38 | Jin L J, Liu S B, Xie T, et al. Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113(2): 575-584. |
39 | Tjandra W, Yao J, Tam K C. Interaction between silicates and ionic surfactants in dilute solution[J]. Langmuir, 2006, 22(4): 1493-1499. |
40 | Liu H, Zhang S, Xie S J, et al. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route[J]. Chinese Journal of Catalysis, 2018, 39(1): 167-180. |
41 | Gao S S, Xu S T, Wei Y X, et al. Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: coke, diffusion, and acidic site accessibility[J]. Journal of Catalysis, 2018, 367: 306-314. |
42 | 郭强胜, 毛东森, 劳嫣萍, 等. 氟改性对纳米HZSM-5分子筛催化甲醇制丙烯的影响[J]. 催化学报, 2009, 30(12): 1248-1254. |
Guo Q S, Mao D S, Lao Y P, et al. The effect of fluorine modification on catalytic performance of nanosized HZSM-5 zeolite for conversion of methanol to propene[J]. Chinese Journal of Catalysis, 2009, 30(12): 1248-1254. | |
43 | Zhang W M, Ming W X, Hu S F, et al. A feasible one-step synthesis of hierarchical zeolite beta with uniform nanocrystals via CTAB[J]. Materials, 2018, 11(5): 651. |
44 | Huang H W, Zhu H, Zhang S H, et al. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 74-82. |
[1] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[2] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[3] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[4] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[5] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[6] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[7] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[8] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[9] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[10] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[11] | Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. CIESC Journal, 2024, 75(6): 2332-2343. |
[12] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[13] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[14] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[15] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 197
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||