CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 760-767.DOI: 10.11949/0438-1157.20240020
• Reviews and monographs • Previous Articles Next Articles
Zhiming CHEN1(), Zefeng WANG2, Gaoqi MA1, Liangbo WANG1, Chengtao YU2,3(), Pengju PAN2,3
Received:
2024-01-04
Revised:
2024-02-21
Online:
2024-05-11
Published:
2024-03-25
Contact:
Chengtao YU
陈志明1(), 王泽凤2, 马高琪1, 王良波1, 余承涛2,3(), 潘鹏举2,3
通讯作者:
余承涛
作者简介:
陈志明(1962—),男,学士,zmchen@hisunpharm.com
基金资助:
CLC Number:
Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification[J]. CIESC Journal, 2024, 75(3): 760-767.
陈志明, 王泽凤, 马高琪, 王良波, 余承涛, 潘鹏举. 基于亚锡灭活及链端改性提高聚乳酸热稳定性的研究进展[J]. 化工学报, 2024, 75(3): 760-767.
Add to citation manager EndNote|Ris|BibTeX
1 | Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers[J]. Polymer Degradation and Stability, 1998, 59(1/2/3):145-152. |
2 | 尹学武. 聚乳酸的研究现状及应用[J]. 成都纺织高等专科学校学报, 2016, 33(1): 24-27. |
Yin X W. Research status and application of polylactic acid[J]. Journal of Chengdu Textile College, 2016, 33(1): 24-27. | |
3 | 汪晓鹏, 连钦, 李文磊, 等. 绿色生物降解塑料聚乳酸的研究进展[J]. 西部皮革, 2021, 43(7): 8-10. |
Wang X P, Lian Q, Li W L, et al. Research progress of green biodegradable plastic polylactic acid[J]. West Leather, 2021, 43(7): 8-10. | |
4 | Stefaniak K, Masek A. Green copolymers based on poly(lactic acid)-short review[J]. Materials, 2021, 14(18): 5254. |
5 | 王宇飞, 王保玉, 周秀苗, 等. 聚乳酸分离膜的制备、改性及其应用进展[J]. 膜科学与技术, 2018, 38(5): 122-129. |
Wang Y F, Wang B Y, Zhou X M, et al. Research progress on preparation, modification and application of poly(lactic acid) separation membrane[J]. Membrane Science and Technology, 2018, 38(5): 122-129. | |
6 | 李亚儒, 陈康. 聚乳酸基生物医用复合材料研究进展[J]. 山东化工, 2018, 47(16): 60-61, 63. |
Li Y R, Chen K. Research progress of poly(lactic acid) biomedical composite materials[J]. Shandong Chemical Industry, 2018, 47(16): 60-61, 63. | |
7 | 杨菊香, 曾莎, 贾园, 等. 聚乳酸改性及其应用进展[J]. 塑料, 2020, 49(5): 102-107. |
Yang J X, Zeng S, Jia Y, et al. Progress in modification of polylactic acid and its application[J]. Plastics, 2020, 49(5): 102-107. | |
8 | 刘春, 李涛. 可降解材料在吸管方面的应用研究进展[J]. 现代塑料加工应用, 2022, 34(3): 60-63. |
Liu C, Li T. Research progress of application of degradable materials in straw[J]. Modern Plastics Processing and Applications, 2022, 34(3): 60-63. | |
9 | 林楚迎. 聚乳酸类可生物降解材料在缓控释药物制剂中的应用价值[J]. 现代盐化工, 2022, 49(5): 30-32. |
Lin C Y. Application value of polylactic acid biodegradable materials in slow and controlled release pharmaceutical preparations[J]. Modern Salt and Chemical Industry, 2022, 49(5): 30-32. | |
10 | 汪燕, 彭少贤, 李敏立, 等. 聚乳酸的直接缩聚、改性及应用研究现状[J]. 化工新型材料, 2010, 38(11): 35-38. |
Wang Y, Peng S X, Li M L, et al. Research on the direct polycondensation and modification techniques and applications of polylactic acid[J]. New Chemical Materials, 2010, 38(11): 35-38. | |
11 | 宁晓瑜. 直接熔融法合成聚乳酸及其共聚物的工艺研究[D]. 大连: 大连理工大学, 2010. |
Ning X Y. Studies on direct synthesis of poly(lactic) acid and its copolymer through melt polycondensation[D]. Dalian: Dalian University of Technology, 2010. | |
12 | 吴传保, 刘利江, 刘祥丽. 非催化条件下的乳酸直接缩聚研究[J]. 化工新型材料, 2013, 41(8): 86-88. |
Wu C B, Liu L J, Liu X L. Study on polycondensation of lactic acid without catalyst[J]. New Chemical Materials, 2013, 41(8): 86-88. | |
13 | Peng B, Hou H B, Song F C, et al. Synthesis of high molecular weight poly(l-lactic acid) via melt/solid state polycondensation (Ⅱ): Effect of precrystallization on solid state polycondensation[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5190-5196. |
14 | 韦运韩, 张鹏鹏. 丙交酯开环聚合合成聚乳酸的研究[J]. 大众科技, 2018, 20(5): 43-45. |
Wei Y H, Zhang P P. Research on ring-opening polymerization of lactide to synthesize polylactic acid[J]. Popular Science & Technology, 2018, 20(5): 43-45. | |
15 | 胡晨阳, 庞烜, 段然龙, 等. 有机金属催化剂与丙交酯(LA)开环聚合反应[J]. 中国科学: 化学, 2018, 48(8): 874-882. |
Hu C Y, Pang X, Duan R L, et al. Organometallic catalysts for the ring-opening polymerization of lactide[J]. Scientia Sinica (Chimica), 2018, 48(8): 874-882. | |
16 | 柴阳, 黄彩娟. 环境友好型生物基材料聚乳酸的合成进展[J]. 广州化学, 2019, 44(2): 84-90. |
Chai Y, Huang C J. Synthesis progress of environmentally friendly bio-based material polylactic acid[J]. Guangzhou Chemistry, 2019, 44(2): 84-90. | |
17 | 周延川, 张涵, 段然龙, 等. 丙交酯立体选择性聚合研究进展[J]. 中国科学: 化学, 2020, 50(7): 806-815. |
Zhou Y C, Zhang H, Duan R L, et al. Recent developments of stereoselective ring-opening polymerization of lactides[J]. Scientia Sinica (Chimica), 2020, 50(7): 806-815. | |
18 | 辛颖, 王天成, 金书含, 等. 聚乳酸市场现状及合成技术进展[J]. 现代化工, 2020, 40(S1): 71-78. |
Xin Y, Wang T C, Jin S H, et al. Present market situation and synthesis technology advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-78. | |
19 | 王方, 赵耀明, 汪朝阳. 氧化亚锡催化直接熔融聚合法合成生物降解材料聚乳酸-聚乙二醇[J]. 材料导报, 2005, 19(2): 118-120. |
Wang F, Zhao Y M, Wang C Y. Direct synthesis of biodegradable material polylactic acid-polyethylene glycol via melt copolymerization and catalyzed by stannous oxide[J]. Materials Review, 2005, 19(2): 118-120. | |
20 | 陈春明.离子液体/氯化亚锡催化合成聚乳酸的研究[J]. 合成纤维工业, 2009, 32(6): 5-7. |
Chen C M. Catalytic synthesis of poly(lactic acid) with ionic liquid/stannous chloride as catalyst[J]. China Synthetic Fiber Industry, 2009, 32(6): 5-7. | |
21 | 张健, 杨善彬, 韩德富. 直接缩聚法合成聚乳酸工艺中三种锡类催化剂对比研究[J]. 化学与生物工程, 2010, 27(1): 30-32. |
Zhang J, Yang S B, Han D F. Comparison of tin and its two chemical compounds as catalyst in direct polycondensation process of polylactic acid[J]. Chemistry & Bioengineering, 2010, 27(1): 30-32. | |
22 | 陈连喜, 刘全文, 田华, 等. 有机锡化合物引发D, L-丙交酯的开环聚合[J]. 应用化工, 2007, 36(7):700-702. |
Chen L X, Liu Q W, Tian H, et al. Ring-opening polymerization of D, L-lactide initiated by organictin compounds[J]. Applied Chemical Industry, 2007, 36(7):700-702. | |
23 | Rao W H, Cai C Y, Tang J Y, et al. Coordination insertion mechanism of ring‐opening polymerization of lactide catalyzed by stannous octoate[J]. Chinese Journal of Chemistry, 2021, 39(7): 1965-1974. |
24 | Gupta M C, Deshmukh V G. Thermal oxidative degradation of poly-lactic acid (Part Ⅰ): Activation energy of thermal degradation in air[J]. Colloid and Polymer Science, 1982, 260(3): 308-311. |
25 | Gupta M C, Deshmukh V G. Thermal oxidative degradation of poly-lactic acid (Part Ⅱ): Molecular weight and electronic spectra during isothermal heating[J]. Colloid & Polymer Science, 1982, 260(5): 514-517. |
26 | 冯舒勤, 张乃文, 任杰. 聚乳酸的热降解与稳定性[J]. 塑料, 2011, 40(1): 59-62. |
Feng S Q, Zhang N W, Ren J. Thermal degradation and stability of poly lactic acid[J]. Plastics, 2011, 40(1): 59-62. | |
27 | Zaaba N F, Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075. |
28 | 毕晨曦. 聚乳酸塑料在高温下水解降解的研究[D]. 大连: 大连理工大学, 2020. |
Bi C X. Study on hydrolytic degradation of polylactic acid at high temperature[D]. Dalian: Dalian University of Technology, 2020. | |
29 | 彭文理, 陈志平, 蒙春燕, 等. 聚乳酸耐热改性的研究进展[J]. 绝缘材料, 2022, 55(4): 13-19. |
Peng W L, Chen Z P, Meng C Y, et al. Research progress on heat resistance modification of polylactic acid[J]. Insulating Materials, 2022, 55(4): 13-19. | |
30 | 何晓莉, 龚芮, 杨秀英, 等. 聚乳酸降解行为和抗老化改性研究进展[J]. 工程塑料应用, 2022, 50(6): 166-171. |
He X L, Gong R, Yang X Y, et al. Research progress on degradation behavior and anti-aging modification of polylactic acid[J]. Engineering Plastics Application, 2022, 50(6): 166-171. | |
31 | Cam D, Marucci M. Influence of residual monomers and metals on poly (L-lactide) thermal stability[J]. Polymer, 1997, 38(8): 1879-1884. |
32 | Nishida H, Mori T, Hoshihara S, et al. Effect of tin on poly(L-lactic acid) pyrolysis[J]. Polymer Degradation and Stability, 2003, 81(3): 515-523. |
33 | Mori T, Nishida H, Shirai Y, et al. Effects of chain end structures on pyrolysis of poly(L-lactic acid) containing tin atoms[J]. Polymer Degradation and Stability, 2004, 84(2): 243-251. |
34 | Wojtczak E, Kubisa P, Bednarek M. Thermal stability of polylactide with different end-groups depending on the catalyst used for the polymerization[J]. Polymer Degradation and Stability, 2018, 151: 100-104. |
35 | Liu X B, Zou Y B, Li W T, et al. Kinetics of thermo-oxidative and thermal degradation of poly(D,L-lactide) (PDLLA) at processing temperature[J]. Polymer Degradation and Stability, 2006, 91(12): 3259-3265. |
36 | Pillin I, Montrelay N, Bourmaud A, et al. Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid)[J]. Polymer Degradation and Stability, 2008, 93(2): 321-328. |
37 | Carrasco F, Pagès P, Gámez-Pérez J, et al. Kinetics of the thermal decomposition of processed poly(lactic acid)[J]. Polymer Degradation and Stability, 2010, 95(12): 2508-2514. |
38 | Carrasco F, Pagès P, Gámez-Pérez J, et al. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties[J]. Polymer Degradation and Stability, 2010, 95(2): 116-125. |
39 | Oliveira M, Santos E, Araújo A, et al. The role of shear and stabilizer on PLA degradation[J]. Polymer Testing, 2016, 51: 109-116. |
40 | Cuadri A A, Martín-Alfonso J E. Thermal, thermo-oxidative and thermomechanical degradation of PLA: a comparative study based on rheological, chemical and thermal properties[J]. Polymer Degradation and Stability, 2018, 150: 37-45. |
41 | Jamshidi K, Hyon S H, Ikada Y. Thermal characterization of polylactides[J]. Polymer, 1988, 29(12): 2229-2234. |
42 | Kopinke F D, Remmler M, MacKenzie K, et al. Thermal decomposition of biodegradable polyesters (Ⅱ): Poly(lactic acid)[J]. Polymer Degradation and Stability, 1996, 53(3): 329-342. |
43 | Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate (3): Polymerization of l,l-dilactide[J]. Macromolecules, 2000, 33(20): 7359-7370. |
44 | Kowalski A, Libiszowski J, Duda A, et al. Polymerization of l,l-dilactide initiated by tin(Ⅱ) butoxide[J]. Macromolecules, 2000, 33(6): 1964-1971. |
45 | Zhang X C, Wyss U P, Pichora D, et al. An investigation of the synthesis and thermal stability of poly(D,L-lactide)[J]. Polymer Bulletin, 1992, 27(6): 623-629. |
46 | Payne J, Jones M D. The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities[J]. ChemSusChem, 2021, 14(19): 4041-4070. |
47 | Benvenuta-Tapia J J, Champagne P, Tenorio-López J A, et al. Improving recycled poly(lactic acid) biopolymer properties by chain extension using block copolymers synthesized by nitroxide-mediated polymerization (NMP)[J]. Polymers, 2021, 13(16): 2791. |
48 | Gazzotti S, Ortenzi M A, Farina H, et al. Carvacrol- and cardanol-containing 1,3-dioxolan-4-ones as comonomers for the synthesis of functional polylactide-based materials[J]. Macromolecules, 2020, 53(15): 6420-6431. |
49 | Buchard A, Chuck C J, Davidson M G, et al. A highly active and selective zirconium-based catalyst system for the industrial production of poly(lactic acid)[J]. ACS Catalysis, 2023, 13(4): 2681-2695. |
50 | Bartholomew C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1/2): 17-60. |
51 | 周南, 李志荣. 锡(Ⅳ)-苯甲酰苯胲螯合物沉淀条件的应用研究[J]. 分析试验室, 1985, 4(3): 31-32, 54. |
Zhou N, Li Z R. Study on the application of precipitation conditions of tin (Ⅳ)-benzoyl benzene chelate[J]. Chinese Journal of Analysis Laboratory, 1985, 4(3): 31-32, 54. | |
52 | Wachsen O, Platkowski K, Reichert K H. Thermal degradation of poly-L-lactide—studies on kinetics, modelling and melt stabilisation[J]. Polymer Degradation and Stability, 1997, 57(1): 87-94. |
53 | Ding S D, Wang Y Z. Enhanced thermal stability of poly(1,4-dioxan-2-one) in melt by adding a chelator[J]. Polymer Degradation and Stability, 2006, 91(10): 2465-2470. |
54 | Cui A J, Xue S H, He M Y, et al. The effects on thermal stability of polyglycolic acid by adding dihydrazide metal chelators[J]. Polymer Degradation and Stability, 2017, 137: 238-243. |
55 | Södergård A, Näsman J H. Stabilization of poly(L-lactide) in the melt[J]. Polymer Degradation and Stability, 1994, 46(1): 25-30. |
56 | Södergård A, Niemi M, Selin J F, et al. Changes in peroxide melt-modified poly(L-lactide)[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1203-1207. |
57 | Södergård A, Näsman J H. Melt stability study of various types of poly(L-lactide)[J]. Industrial & Engineering Chemistry Research, 1996, 35(3): 732-735. |
58 | Takamura M, Nakamura T, Takahashi T, et al. Effect of type of peroxide on cross-linking of poly(L-lactide)[J]. Polymer Degradation and Stability, 2008, 93(10): 1909-1916. |
59 | McNeill I C, Leiper H A. Degradation studies of some polyesters and polycarbonates(1): Polylactide: general features of the degradation under programmed heating conditions[J]. Polymer Degradation and Stability, 1985, 11(3): 267-285. |
60 | Fan Y J, Nishida H, Shirai Y, et al. Thermal stability of poly (L-lactide): influence of end protection by acetyl group[J]. Polymer Degradation and Stability, 2004, 84(1): 143-149. |
61 | Yang L X, Chen X S, Jing X B. Stabilization of poly(lactic acid) by polycarbodiimide[J]. Polymer Degradation and Stability, 2008, 93(10): 1923-1929. |
62 | Najafi N, Heuzey M C, Carreau P J, et al. Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders[J]. Polymer Degradation and Stability, 2012, 97(4): 554-565. |
63 | 曹科军, 严玉蓉, 徐旭峰, 等. 聚碳化二亚胺对聚乳酸湿热稳定性的影响[J]. 塑料工业, 2010, 38(6): 11-14. |
Cao K J, Yan Y R, Xu X F, et al. Effect of polycarbodiimide on the hydrothermal stability of polylactic acid[J]. China Plastics Industry, 2010, 38(6): 11-14. | |
64 | 王彪, 万同, 曾威. 聚乳酸的热降解和稳定性研究[J]. 高分子通报, 2015(7): 57-64. |
Wang B, Wan T, Zeng W. Thermal degradability and stability of poly(lactic acid)[J]. Polymer Bulletin, 2015(7): 57-64. | |
65 | Cicero J A, Dorgan J R, Dec S F, et al. Phosphite stabilization effects on two-step melt-spun fibers of polylactide[J]. Polymer Degradation and Stability, 2002, 78(1): 95-105. |
66 | 史国涛. 亚磷酸酯类扩链剂对聚乳酸的扩链稳定性研究[D]. 上海: 华东理工大学, 2015. |
Shi G T. Chain-extension and stabilization of phosphites as chain extenders in polylactide[D]. Shanghai: East China University of Science and Technology, 2015. | |
67 | Gruber P R, Kolstad J J, Hall E S, et al. Melt-stable lactide polymer composition and process for manufacture thereof: US5338822[P]. 1994-08-16. |
68 | Suizu H, Takagi M, Ajioka M, et al. Purification process of aliphatic polyester: US5496923[P]. 1996-03-05. |
69 | Suizu H, Takagi M, Ajioka M, et al. Purification process of aliphatic polyester: US5679767[P]. 1997-10-21. |
70 | Hartmann M H. High molecular weight polylactic acid polymers[M]//Kaplan D L. Biopolymers from Renewable Resources. Berlin, Heidelberg: Springer, 1998: 367-411. |
71 | Sato T, Kikuchi S. Liquid-liquid extraction of tin(Ⅳ) from hydrochloric acid solutions by di(2-ethylhexyl) phosphoric acid[J]. Hydrometallurgy, 1988, 20(1): 97-108. |
72 | Terada K, Takahata M. Separation and determination of tin by strong phosphoric acid distillation[J]. Fresenius’ Zeitschrift Für Analytische Chemie, 1982, 321(8): 760-761. |
73 | Ahn J W, Lee J C. Separation of Sn, Sb, Bi, As, Cu, Pb and Zn from hydrochloric acid solution by solvent extraction process using TBP (tri-n-butylphosphate) as an extractant[J]. Materials Transactions, 2011, 52(12): 2228-2232. |
74 | Schwetlick K, Habicher W D. Organophosphorus antioxidants action mechanisms and new trends[J]. Die Angewandte Makromolekulare Chemie, 1995, 232(1): 239-246. |
75 | McNeill I C, Leiper H A. Degradation studies of some polyesters and polycarbonates (2): Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer[J]. Polymer Degradation and Stability, 1985, 11(4): 309-326. |
76 | Obuchi S, Ohta M. Polyhydroxycarboxylic acid and purification process thereof: US5386004[P]. 1995-01-31. |
77 | Yoshida Y, Watanabe K, Obuchi S, et al. Purification process of polyhydroxycarboxylic acid: US5616783[P]. 1997-04-01. |
78 | Kelly W E, Baird R L. Stabilization of poly(hydroxyacid)s derived from lactic or glycolic acid: US5382617[P]. 1995-01-17. |
[1] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[2] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[3] | Zhuoyu LI, Peng JIN, Xiaoyan CHEN, Zeyu ZHAO, Qinghong WANG, Chunmao CHEN, Yali ZHAN. Effect and mechanism on the degradation of aqueous bisphenol A by zero valent iron activated peroxyacetic acid system [J]. CIESC Journal, 2024, 75(3): 987-999. |
[4] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[5] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[6] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[7] | Xinyu WANG, Yongtao WANG, Jia YAO, Haoran LI. Progress in the application of electron paramagnetic resonance in fundamental chemical engineering research [J]. CIESC Journal, 2024, 75(1): 74-82. |
[8] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[9] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[12] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[13] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[14] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[15] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||