CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 339-348.DOI: 10.11949/0438-1157.20240717
• Process safety • Previous Articles
Huanjuan ZHAO1,2(), Yingxin BAO1, Kang YU2, Jing LIU1, Xinming QIAN3
Received:
2024-06-26
Revised:
2024-07-02
Online:
2024-12-17
Published:
2024-12-25
Contact:
Huanjuan ZHAO
赵焕娟1,2(), 包颖昕1, 于康2, 刘婧1, 钱新明3
通讯作者:
赵焕娟
作者简介:
赵焕娟(1985—),女,博士,副教授,ziai.1985@163.com
基金资助:
CLC Number:
Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component[J]. CIESC Journal, 2024, 75(S1): 339-348.
赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348.
多元组分 | CH4 | H2 | O2 | N2 | C2H2 | C2H4 | CO | CO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|
#1 | 0.021 | 0.064 | 0.277 | 0.375 | 0.016 | 0.031 | 0.054 | 0.049 | 0.001 |
#2 | 0.012 | 0.027 | 0.277 | 0.429 | 0.015 | 0.025 | 0.047 | 0.044 | 0.001 |
Table 1 Mixtures with different fuel compositions used in the experiment
多元组分 | CH4 | H2 | O2 | N2 | C2H2 | C2H4 | CO | CO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|
#1 | 0.021 | 0.064 | 0.277 | 0.375 | 0.016 | 0.031 | 0.054 | 0.049 | 0.001 |
#2 | 0.012 | 0.027 | 0.277 | 0.429 | 0.015 | 0.025 | 0.047 | 0.044 | 0.001 |
预混气 | 初始压力/kPa | 方差/mm2 |
---|---|---|
多元组分#1 | 20 | 6.72 |
25 | 5.25 | |
40 | 2.72 | |
50 | 1.75 | |
80 | 2.87 | |
100 | 3.10 | |
多元组分#2 | 20 | 8.63 |
25 | 7.61 | |
40 | 6.90 | |
50 | 8.38 | |
80 | 4.02 | |
100 | 4.15 | |
2H2+O2 | 15 | 0.58 |
CH4+2O2 | 15 | 2.70 |
Table 2 Variance of triple point trajectory spacing for each premixed mixture
预混气 | 初始压力/kPa | 方差/mm2 |
---|---|---|
多元组分#1 | 20 | 6.72 |
25 | 5.25 | |
40 | 2.72 | |
50 | 1.75 | |
80 | 2.87 | |
100 | 3.10 | |
多元组分#2 | 20 | 8.63 |
25 | 7.61 | |
40 | 6.90 | |
50 | 8.38 | |
80 | 4.02 | |
100 | 4.15 | |
2H2+O2 | 15 | 0.58 |
CH4+2O2 | 15 | 2.70 |
多元组分 | a | b | 关系式 | R2 |
---|---|---|---|---|
#1 | 227.2997 | 0.5035 | 0.8999 | |
#2 | 448.3514 | 0.7966 | 0.9784 |
Table 3 Parameters of the relationship between pitch and initial pressure
多元组分 | a | b | 关系式 | R2 |
---|---|---|---|---|
#1 | 227.2997 | 0.5035 | 0.8999 | |
#2 | 448.3514 | 0.7966 | 0.9784 |
预混气 | X | εI/(kJ/mol) | 胞格不稳定度 |
---|---|---|---|
CH4+2O2 | 52.50 | 11.84 | 高度不稳定 |
2H2+O2+50%Ar | 0.74 | 4.52 | 高度稳定 |
Table 4 Comparison of instability parameter X, effective activation energy and cell instability of the three premixed gases[29]
预混气 | X | εI/(kJ/mol) | 胞格不稳定度 |
---|---|---|---|
CH4+2O2 | 52.50 | 11.84 | 高度不稳定 |
2H2+O2+50%Ar | 0.74 | 4.52 | 高度稳定 |
项目 | ||||
---|---|---|---|---|
理论值 | 52.50 | 0.74 | 13.53 | 16.67 |
实验值 | 2.70 | 0.58 | 1.10 | 1.23 |
偏差 | 94.86% | 21.62% | 91.86% | 92.62% |
Table 5 Comparison of instability parameters
项目 | ||||
---|---|---|---|---|
理论值 | 52.50 | 0.74 | 13.53 | 16.67 |
实验值 | 2.70 | 0.58 | 1.10 | 1.23 |
偏差 | 94.86% | 21.62% | 91.86% | 92.62% |
预混气 | 基元反应进程 |
---|---|
2H2+O2+3Ar[ | H2+O2![]() |
H2+M![]() | |
H·+O2![]() | |
O·+H2![]() | |
HO2·+H·![]() | |
H2+HO2·![]() | |
H2O2![]() | |
OH·+H2![]() | |
CH4+2O2[ | CH3+OH![]() |
HCOH+O2![]() | |
HCOH+O2![]() | |
CH3OH![]() | |
CH3OH+CH3![]() | |
CH2OH+O2![]() | |
CH2OH+HCO![]() | |
CH2O+H![]() | |
CH3+OH![]() | |
CH2+O2![]() | |
CH4+CH2![]() | |
CH2+O2![]() | |
CH3+OH![]() | |
CH2(S)+O2![]() | |
CH2(S)+H2![]() | |
CH2(S)+O2![]() | |
CH3+OH![]() |
Table 6 Comparison of reaction processes of different premixed mixtures
预混气 | 基元反应进程 |
---|---|
2H2+O2+3Ar[ | H2+O2![]() |
H2+M![]() | |
H·+O2![]() | |
O·+H2![]() | |
HO2·+H·![]() | |
H2+HO2·![]() | |
H2O2![]() | |
OH·+H2![]() | |
CH4+2O2[ | CH3+OH![]() |
HCOH+O2![]() | |
HCOH+O2![]() | |
CH3OH![]() | |
CH3OH+CH3![]() | |
CH2OH+O2![]() | |
CH2OH+HCO![]() | |
CH2O+H![]() | |
CH3+OH![]() | |
CH2+O2![]() | |
CH4+CH2![]() | |
CH2+O2![]() | |
CH3+OH![]() | |
CH2(S)+O2![]() | |
CH2(S)+H2![]() | |
CH2(S)+O2![]() | |
CH3+OH![]() |
1 | Zhang K, Jin D, Song F L. Experimental research on nanosecond pulsed gliding arc discharge plasma cracking kerosene[J]. Journal of Propulsion Technology, 2022, 43(7): 419-427. |
2 | Liu M X, Tan N X, Wang J B. Mechanism construction and kinetic simulation for the combustion of cracked kerosene[J]. Chem. Res. Appl., 2019, 31: 278-282. |
3 | Rudy W, Zbikowski M, Teodorczyk A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels[J]. Energy, 2016, 116: 1479-1483. |
4 | Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216. |
5 | Zhong Y P, Jin D, Wu Y, et al. Investigation of rotating detonation wave fueled by“ethylene-acetylene-hydrogen”mixture[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14787-14797. |
6 | Zhou S B, Ma H, Chen S H, et al. Experimental investigation on propagation characteristics of rotating detonation wave with a hydrogen-ethylene-acetylene fuel[J]. Acta Astronautica, 2019, 157: 310-320. |
7 | Zhou S B, Ma H, Zhou C S, et al. Experimental research on the propagation process of rotating detonation wave with a gaseous hydrocarbon mixture fuel[J]. Acta Astronautica, 2021, 179: 1-10. |
8 | 韩家祥, 白桥栋, 邱晗, 等. 燃烧室结构对煤油预燃裂解气旋转爆轰特性的影响[J]. 兵工学报. 2024, 45(8): 2837-2850. |
Han J X, Bai Q D, Qiu H, et al. Influence of combustor configuration on rotating detonation characteristics of kerosene pre-combustion cracking gas[J]. Acta Armrmamentarii. 2024, 45(8): 2837-2850. | |
9 | 陈昊, 白桥栋, 翁春生. 旋转爆轰燃烧室内煤油多元组分冷流掺混特性研究[J]. 弹道学报, 2023, 35(2): 9-19. |
Chen H, Bai Q D, Weng C S. Research on cold flow mixing characteristics of kerosene pyrolysis gas in rotating detonation combustor[J]. Journal of Ballistics, 2023, 35(2): 9-19. | |
10 | 吴敏宣, 白桥栋, 翁春生, 等. C2H4/CH4/H2混合气旋转爆轰波传播特性数值模拟研究[J]. 推进技术, 2022, 43(11): 210712. |
Wu M X, Bai Q D, Weng C S, et al. Numerical simulation of rotating detonation wave propagation characteristics of C2H4/CH4/H2 mixture[J]. Journal of Propulsion Technology, 2022, 43(11): 210712. | |
11 | 吴明亮, 郑权, 续晗 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响[J]. 兵工学报, 2022, 43(1): 86-97. |
Wu M L, Zheng Q, Xu H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves[J]. Acta Armrmamentarii, 2022, 43(1): 86-97. | |
12 | 刘秋月, 王放, 翁春生, 等. 预混煤油/空气两相旋转爆轰传播特性数值研究[J]. 推进技术, 2024, 45(9): 113-123. |
Liu Q Y, Wang F, Weng C S, et al. Numerical study on propagation characteristics of two-phase rotating detonation of premixed kerosene/air[J]. Journal of Propulsion Technology, 2024, 45(9): 113-123. | |
13 | 黄瀚黎, 吕亚锦, 郑权, 等. 当量比对常温煤油-氢气-空气旋转爆轰传播影响[J]. 航空动力学报, 2024, 39(9): 20220712. |
Huang H L, Lv Y J, Zheng Q, et al. Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature[J]. Journal of Aerospace Power, 2024, 39(9): 20220712. | |
14 | Zheng Q, Hao L M, Weng C S, et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation Technology, 2020, 16(6): 1106-1115. |
15 | Li X, Li J, Qin Q, et al. Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engine[J]. Acta Astronautica, 2024, 215: 124-134. |
16 | Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology, 2015, 43: 445-453. |
17 | Frolov S M, Aksenov V S, Ivanov V S, et al. Continuous detonation combustion of ternary “hydrogen-liquid propane-air” mixture in annular combustor[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16808-16820. |
18 | Prakash S, Raman V, Lietz C, et al. Numerical simulation of a methane-oxygen rotating detonation rocket engine[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3777-3786. |
19 | Bouras F, El Hadi Attia M, Khaldi F, et al. Control of methane flame properties by hydrogen fuel addition: application to power plant combustion chamber[J]. International Journal of Hydrogen Energy, 2017, 42(13): 8932-8939. |
20 | Shih H, Liu C. A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbine[J]. International Journal of Hydrogen Energy, 2014, 39 (27): 15103-15115. |
21 | Burbano H J, Amell A A, García J M. Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners[J]. International Journal of Hydrogen Energy, 2008, 33 (13): 3410-3415. |
22 | Yang C, Han Q, Liu H, et al. Ignition characteristics of methane-air mixture at low initial temperature[J]. Frontiers in Energy Research, 2023, 10: 1003470. |
23 | Welch C, Depperschmidt D, Miller R, et al. Experimental analysis of wave propagation in a methane-fueled rotating detonation combustor[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway, 2018. |
24 | Bykovskii F, Zhdan S, Vedernikov E. Continuous detonation of methane/hydrogen-air mixtures in an annular cylindrical combustor[J]. Combustion, Explosion, and Shock Waves, 2018, 54: 472-481. |
25 | Cojocea A V, Cuciuc T, Porumbel I, et al. Experimental investigations of hydrogen fuelled pulsed detonation combustor[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Rotterdam, Netherlands, 2022. |
26 | Zheng Z J, Wan Z J, Li P, et al. High temperature auto-ignition delay characteristics of pyrolysis gas of aviation kerosene[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 391-397. |
27 | 赵焕娟, Lee J H S, 张英华. 甲烷预混气螺旋爆轰的定量不稳定性研究[J]. 工程科学学报, 2016, 38(11): 1522-1531. |
Zhao H J, Lee J H S, Zhang Y H. Quantitative irregularity analysis for spinning detonation of premixed CH4+2O2 [J]. Chinese Journal of Engineering, 2016, 38(11): 1522-1531. | |
28 | Gao Y, Ng H D, Lee J H S. Minimum tube diameters for steady propagation of gaseous detonations[J]. Shock Waves, 2014, 24(4): 447-454. |
29 | Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modelling, 2005, 9(3): 385-401. |
30 | 李象远, 申屠江涛, 李宜蔚, 等. 燃烧反应机理构建的极小反应网络方法——氢氧燃烧[J]. 高等学校化学学报, 2020, 41(4): 772-779. |
Li X Y, Shentu J T, Li Y W, et al. Combustion mechanism construction based on minimized reaction network: hydrogen-oxygen combustion[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 772-779. | |
31 | 黄婷, 张浩楠, 薛洁, 等. 甲烷机理的简化及其在Flame D火焰数值模拟中的应用[J]. 化学研究与应用, 2022, 34(10): 2425-2434. |
Huang T, Zhang H N, Xu J, et al. Reduction of methane mechanism and its application in the numerical simulation of flame D[J]. Chemical Research and Application, 2022, 34(10): 2425-2434. |
[1] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[2] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[3] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[4] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[5] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[6] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[7] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
[8] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[9] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[10] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[11] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
[12] | Chenggong CHANG, Haonan SONG, Feixia LEI, Zichen DI, Fangqin CHENG. Study on the carbon reduction potential of blast furnace injection process using reformed coke oven gas [J]. CIESC Journal, 2024, 75(6): 2344-2352. |
[13] | Mengyao KOU, Fangfei ZHENG, Wen XU, Na GUO, Bing LIAO. Determination of tetracycline degradation by alkali-catalyzed hydrogen peroxide system: law of action and mechanism analysis [J]. CIESC Journal, 2024, 75(6): 2362-2374. |
[14] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
[15] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||