CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 231-240.DOI: 10.11949/0438-1157.20240629
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shan GUO(), Yu TIAN, Yongbin XU, Peng WANG(
), Zhiming LIU(
)
Received:
2024-06-06
Revised:
2024-09-20
Online:
2025-02-08
Published:
2025-01-25
Contact:
Peng WANG, Zhiming LIU
通讯作者:
王朋,刘治明
作者简介:
郭珊(2000—),女,硕士研究生,19861834561@163.com
基金资助:
CLC Number:
Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation[J]. CIESC Journal, 2025, 76(1): 231-240.
郭珊, 田雨, 徐永滨, 王朋, 刘治明. 废旧电池再资源化制备高性能中熵合金催化剂及其性能研究[J]. 化工学报, 2025, 76(1): 231-240.
Fig.2 (a) HR-TEM image of Pd MEA@N-C nanoparticle; (b) IFFT image of (200), (111) plane of Pd MEA nanoparticle; (c) FFT image of Pd MEA@N-C nanoparticle
Fig.8 Electrochemical performance: (a) CV curves of Pd MEA@N-C, NCM@N-C and N-C electrodes at 0.1 mV·s-1; (b) Discharge-charge curves of the three electrodes at a curtailed capacity of 1000 mAh·g-1 at 200 mA·g-1; (c) The initial deep discharge-charge curves of the three electrodes at 200 mA·g-1; (d) Cycling stability of Pd MEA@N-C electrode at 200 mA·g-1 with a limited capacity of 500 mAh·g-1; (e) EIS spectra of Pd MEA@N-C, NCM@N-C and N-C electrodes in the pristine
Fig.9 (a) Ex-situ XRD patterns of discharged and charged Pd MEA@N-C, NCM@N-C and N-C electrodes during the 1st cycle; SEM images after discharged to 1000 mAh·g-1 for (b) Pd MEA@N-C, (c) NCM@N-C and (d) N-C cathode
Fig.11 (a) Ex-situ XRD patterns of the initial deep discharge-charge curves Pd MEA@N-C, NCM@N-C and N-C electrodes; SEM images after deep discharged for (b) Pd MEA@N-C, (c) NCM@N-C and (d) N-C cathode
1 | Lu Q, Zhou J L, Zhou X Y, et al. Evaluation of optimal waste lithium-ion battery recycling technology driven by multiple factors[J]. Journal of Energy Storage, 2024, 86: 111229. |
2 | Jiang W J, Tang T, Zhang Y, et al. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Accounts of Chemical Research, 2020, 53(6): 1111-1123. |
3 | Nie S, Cai G T, Huang Y P, et al. Deciphering stakeholder strategies in electric vehicle battery recycling: insights from a tripartite evolutionary game and system dynamics[J]. Journal of Cleaner Production, 2024, 452: 142174. |
4 | Guo R, He Y J, Tian X J, et al. New energy vehicle battery recycling strategy considering carbon emotion from a closed-loop supply chain perspective[J]. Scientific Reports, 2024, 14(1): 688. |
5 | Gerold E, Lerchbammer R, Antrekowitsch H. Recovery of cobalt, nickel, and lithium from spent lithium-ion batteries with gluconic acid leaching process: kinetics study[J]. Batteries, 2024, 10(4): 120. |
6 | Kang S Y, Ou J T, Wang X, et al. Effect analysis on recycling of cathode material from spent ternary lithium-ion batteries via supercritical water oxidation and acid-leaching[J]. The Journal of Supercritical Fluids, 2024, 211: 106297. |
7 | Li C Y, Dai G F, Liu R Y, et al. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries[J]. Separation and Purification Technology, 2023, 306: 122559. |
8 | Sun C Y, Cui X H, Xiao F L, et al. Modulating the d-band center of RuO2 via Ni incorporation for efficient and durable Li-O2 batteries[J]. Small, 2024, 20(32): e2400010. |
9 | Su L W, Zhang L, Zhan X Y, et al. Oxygen defect regulation, catalytic mechanism, and modification of HfO2 as a novel catalyst for lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2024, 12(2): 1176-1184. |
10 | Xiao F L, Bao Q S, Sun C Y, et al. d-band center regulation for durable catalysts and constructing a robust hybrid layer on Li anode enable long-life Li-O2 batteries[J]. Advanced Energy Materials, 2024, 14(15): 2303766. |
11 | Zhang E H, Dong A Q, Yin K, et al. Electron localization in rationally designed Pt1Pd single-atom alloy catalyst enables high-performance Li-O2 batteries[J]. Journal of the American Chemical Society, 2024, 146(4): 2339-2344. |
12 | Yan W, Wang X, Liu M M, et al. PCTS-controlled synthesis of L10/L12-typed Pt-Mn intermetallics for electrocatalytic oxygen reduction[J]. Advanced Functional Materials, 2024, 34(6): 2310487. |
13 | Liao Y T, Zhu R T, Zhang W J, et al. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution[J]. Nano Research, 2024, 17(4): 3379-3389. |
14 | Ma S Y, Lou A Q, Yao K, et al. Epitaxial growth of Li2O2 achieved by a rational designed Fe3O4@N-doped carbon nanoflower structure for improving the performance of Li-O2 batteries[J]. ChemNanoMat, 2024, 10(1): e202300447. |
15 | Zhao Y J, Meng K, Luo T, et al. Electronic structure engineering of RuCo nanoalloys supported on nanoporous carbon for Li-O2 batteries[J]. Journal of Power Sources, 2024, 597: 234130. |
16 | Zhang T, He Z, Yin L, et al. CoNi alloy nanoparticles confined by N-doped carbon matrix with tailored d-band center for electrocatalytic hydrogen evolution[J]. Fuel, 2024, 365: 131176. |
17 | Zhang F, Sun S W, Ge X H, et al. Synthesizing Pd-based high entropy alloy nanoclusters for enhanced oxygen reduction[J]. Chemical Communications, 2024, 60(26): 3591-3594. |
18 | Li Z, Tian Z L, Cheng H, et al. Engineering d-band center of FeN4 moieties for efficient oxygen reduction reaction electrocatalysts[J]. Energy Storage Materials, 2023, 59: 102764. |
19 | Li D Y, Zhao L L, Wang J, et al. Tailoring the d-band center over isomorphism pyrite catalyst for optimized intrinsic affinity to intermediates in lithium-oxygen batteries[J]. Advanced Energy Materials, 2023, 13(15): 2204057. |
20 | Sun L, Yuwono J A, Zhang S L, et al. High entropy alloys enable durable and efficient lithium-mediated CO2 redox reactions[J]. Advanced Materials, 2024, 36(25): 2401288. |
21 | Li T F, Zhang L P, Zhang L, et al. Tailoring the chemisorption manner of Fe d-band center with La2O3 for enhanced oxygen reduction in anion exchange membrane fuel cells[J]. Advanced Functional Materials, 2024, 34(9): 2309886. |
22 | Zhang P, Hui X B, Nie Y J, et al. New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li-O2 batteries[J]. Small, 2023, 19(15): e2206742. |
23 | Tian J M, Rao Y, Shi W H, et al. Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li-O2 batteries[J]. Angewandte Chemie International Edition, 2023, 62(44): e202310894. |
24 | Han X, Zhao L L, Wang J, et al. Delocalized electronic engineering of Ni5P4 nanoroses for durable Li-O2 batteries[J]. Advanced Materials, 2023, 35(35): 2301897. |
25 | 杨阳. ZIF-67衍生物的合成及其对锂氧电池催化性能的影响[D]. 南京: 南京邮电大学, 2019. |
Yang Y. Synthesis of ZIF-67 derivatives and their effects on catalytic performance of lithium-oxygen batteries[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. | |
26 | 张萌. 锂氧电池正极材料的设计及性能研究[D]. 天津: 天津工业大学, 2020. |
Zhang M. Design and performance study of cathode materials for lithium-oxygen batteries[D]. Tianjin: Tianjin Polytechnic University, 2020. | |
27 | Feng J J, Wang H C, Guo L, et al. Stacking surface derived catalytic capability and by-product prevention for high efficient two dimensional Bi2Te3 cathode catalyst in Li-oxygen batteries[J]. Applied Catalysis B: Environmental, 2022, 318: 121844. |
28 | Li S S, Liu Y S, Wu X Y, et al. Tailoring the growth and morphology of lithium peroxide: nickel sulfide/nickel phosphate nanotubes with optimized electronic structure for lithium-oxygen batteries[J]. Small, 2023, 19(52): e2304435. |
29 | Li M, Wu J X, You Z C, et al. Crown ether electrolyte induced Li2O2 amorphization for low polarization and long lifespan Li-O2 batteries[J]. Angewandte Chemie International Edition, 2024, 63(27): e202403521. |
30 | Yan H, Wang W W, Wu T R, et al. Morphology-dictated mechanism of efficient reaction sites for Li2O2 decomposition[J]. Journal of the American Chemical Society, 2023, 145(22): 11959-11968. |
31 | Zhang Y, Zhang S T, Ma J G, et al. Single-atom-mediated spinel octahedral structures for elevated performances of Li-oxygen batteries[J]. Angewandte Chemie International Edition, 2023, 62(15): e202218926. |
32 | Zhang Y, Zhang S T, Li H N, et al. Tunable oxygen vacancies of cobalt oxides in lithium-oxygen batteries: morphology control of discharge product[J]. Nano Letters, 2023, 23(19): 9119-9125. |
33 | Zhang X Q, Zhang G L, Yang R N, et al. Lattice-dependent activation of highly efficient SnTe cathode catalyst for Li-air batteries[J]. Energy Storage Materials, 2024, 69: 103392. |
[1] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
[2] | Jijun ZOU, Baohong LIU, Chengxiang SHI, Lun PAN, Xiangwen ZHANG. Research progress of heterogeneous catalysts for conversion of holocellulose derivatives into bio-aviation fuels [J]. CIESC Journal, 2025, 76(1): 1-17. |
[3] | Chen YANG, Wei MAO, Xingzong DONG, Song TIAN, Fengwei ZHAO, Jian LYU. Research progress in the synthesis of olefins by selective hydrodechlorination [J]. CIESC Journal, 2025, 76(1): 53-70. |
[4] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
[5] | Fan LI, Yanjun YIN, Junchao XU, Liqiao JIANG, Xiaohan WANG, Huaqiang CHU. Enhancing the flame stability in a flat plate burner using catalytic coating of CeO2-ZrO2 [J]. CIESC Journal, 2025, 76(1): 394-404. |
[6] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[7] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[8] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[9] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[10] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[11] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[12] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[13] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
[14] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[15] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||