CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2939-2948.DOI: 10.11949/0438-1157.20240506
• Energy and environmental engineering • Previous Articles Next Articles
Mingjun YANG(), Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN(
), Yongchen SONG
Received:
2024-05-08
Revised:
2024-06-29
Online:
2024-08-21
Published:
2024-08-25
Contact:
Bingbing CHEN
通讯作者:
陈兵兵
作者简介:
杨明军(1982—),男,博士,教授,yangmj@dlut.edu.cn
基金资助:
CLC Number:
Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation[J]. CIESC Journal, 2024, 75(8): 2939-2948.
杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948.
Add to citation manager EndNote|Ris|BibTeX
组别 | 是否生成 | 实验过程 | 恒温时间/min |
---|---|---|---|
1 | 否 | 4.02 MPa恒压、4℃恒温诱导 | 600 |
2 | 否 | 4.06 MPa恒压、1℃恒温诱导 | 500 |
Table 1 Summary of experimental information for routine generation group
组别 | 是否生成 | 实验过程 | 恒温时间/min |
---|---|---|---|
1 | 否 | 4.02 MPa恒压、4℃恒温诱导 | 600 |
2 | 否 | 4.06 MPa恒压、1℃恒温诱导 | 500 |
组别 | 实验过程 | 生成时刻/min | 生成温度/℃ | 过冷度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|---|
3 | 4.09 MPa恒压、-15℃恒温诱导 | 283.4 | -9.84 | 18.95 | 7.95 | 7.54 |
4 | 4.06 MPa恒压、-15℃恒温诱导 | 273.4 | -8.85 | 17.96 | 9.35 | 3.77 |
5 | 4.05 MPa恒压、-15℃恒温诱导 | 274.1 | -8.92 | 18.03 | 5.38 | 3.68 |
Table 2 Summary of experimental information on the high subcooling action group
组别 | 实验过程 | 生成时刻/min | 生成温度/℃ | 过冷度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|---|
3 | 4.09 MPa恒压、-15℃恒温诱导 | 283.4 | -9.84 | 18.95 | 7.95 | 7.54 |
4 | 4.06 MPa恒压、-15℃恒温诱导 | 273.4 | -8.85 | 17.96 | 9.35 | 3.77 |
5 | 4.05 MPa恒压、-15℃恒温诱导 | 274.1 | -8.92 | 18.03 | 5.38 | 3.68 |
组别 | 促进剂浓度/%(质量分数) | 生成时刻/min | 生成温度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|
6 | 2 | 296.18 | -11.11 | 9.074 | 5.486 |
7 | 3 | 372.08 | -14.72 | 8.079 | 11.827 |
8 | 4 | 285.37 | -10.04 | 9.359 | 4.933 |
Table 3 Summary of experimental information on additive action group
组别 | 促进剂浓度/%(质量分数) | 生成时刻/min | 生成温度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|
6 | 2 | 296.18 | -11.11 | 9.074 | 5.486 |
7 | 3 | 372.08 | -14.72 | 8.079 | 11.827 |
8 | 4 | 285.37 | -10.04 | 9.359 | 4.933 |
组别 | 变温速率/(K/min) | 生成时刻/min | 生成温度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|
9 | 0.1 | 273.38 | -8.85 | 9.351 | 3.768 |
10 | 0.2 | 165.33 | -11.30 | 9.313 | 5.791 |
11 | 0.3 | 134.55 | -14.73 | 9.647 | 7.146 |
Table 4 Summary of experimental information for the variable temperature rate group
组别 | 变温速率/(K/min) | 生成时刻/min | 生成温度/℃ | 水转化率/% | 生成速率/(10-6 mol/min) |
---|---|---|---|---|---|
9 | 0.1 | 273.38 | -8.85 | 9.351 | 3.768 |
10 | 0.2 | 165.33 | -11.30 | 9.313 | 5.791 |
11 | 0.3 | 134.55 | -14.73 | 9.647 | 7.146 |
1 | 孙龙德, 张鹏程, 江航, 等. 油气安全与能源转型的新趋势[J]. 世界石油工业, 2024, 31(1): 6-15. |
Sun L D, Zhang P C, Jiang H, et al. New trends in oil and gas security and energy transition[J]. World Petroleum Industry, 2024, 31(1): 6-15. | |
2 | Liu Y, Wang P F, Yang M J, et al. CO2 sequestration in depleted methane hydrate sandy reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 428-434. |
3 | Yang M J, Song Y C, Jiang L L, et al. CO2 hydrate formation and dissociation in cooled porous media: a potential technology for CO2 capture and storage[J]. Environmental Science & Technology, 2013, 47(17): 9739-9746. |
4 | Zhao G J, Zheng J N, Gong G J, et al. Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage[J]. Applied Energy, 2023, 351: 121896. |
5 | 王屹. 水合物法二氧化碳封存及海水淡化联产技术研究[D]. 广州: 中国科学院广州能源研究所, 2022. |
Wang Y. Research on carbon dioxide sequestration and seawater desalination co-production technology by hydrate method[D]. Guangzhou: Guangzhou Energy Research Institute, Chinese Academy of Sciences, 2022. | |
6 | Ma S H, Zheng J N, Tang D W, et al. Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter[J]. Applied Energy, 2019, 254: 113653. |
7 | 杨晓梅, 肖朋, 孙长宇, 等. 轻烃和二氧化碳水合物生成动力学促进剂研究进展[J/OL]. 过程工程学报.[2024-07-18]. . |
Yang X M, Xiao P, Sun C Y, et al. Progress of kinetic promoters for light hydrocarbon and carbon dioxide hydrate generation[J/OL]. Journal of Process Engineering.[2024-07-18]. . | |
8 | 樊栓狮, 尤莎莉, 郎雪梅, 等. 笼型水合物膜分离和捕获二氧化碳研究进展[J]. 化工进展, 2020, 39(4): 1211-1218. |
Fan S S, You S L, Lang X M, et al. Separation and capture carbon dioxide by clathrate-hydrate membranes: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1211-1218. | |
9 | Zhang Y, Zhao J, Bhattacharjee G, et al. Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity[J]. Energy & Environmental Science, 2022, 15(12): 5362-5378. |
10 | 卓成刚, 刘秀慧. CO2海洋封存技术国内外研究进展与启示[J]. 安全与环境工程, 2017, 24(5): 84-89. |
Zhuo C G, Liu X H. Research progress and enlightenment of CO2 ocean sequestration technology at home and abroad[J]. Safety and Environmental Engineering, 2017, 24(5): 84-89. | |
11 | Kim Y H, Park L K, Yiacoumi S, et al. Modular chemical process intensification: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 359-380. |
12 | 邝若谷, 吴良猛, 谢凤梅, 等. 活性炭+THF溶液体系中CO2水合物生成特性研究[J]. 低碳化学与化工, 2023, 48(5): 109-114, 134. |
Kuang R G, Wu L M, Xie F M, et al. Study on characteristics of CO2 hydrate formation in activated carbon+THF solution system[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 109-114, 134. | |
13 | 刘生浩. 二次加压条件下不同促进剂对二氧化碳水合物生成与稳定性影响的实验研究[D]. 兰州: 兰州理工大学, 2023. |
Liu S H. Experimental study on the effects of different accelerators on the formation and stability of carbon dioxide hydrate under secondary pressure[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
14 | 张学民, 贺冠宇, 王佳贤, 等. 液化条件对多孔介质中CO2水合物生成过程的影响[J]. 高校化学工程学报, 2023, 37(4): 599-607. |
Zhang X M, He G Y, Wang J X, et al. Effects of liquefaction conditions on CO2 hydrate formation in porous media[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4): 599-607. | |
15 | Dalmazzone D, Hamed N, Dalmazzone C, et al. Applicationof high pressure DSC to the kinetics of formation of methane hydrate inwater-in-oilemulsion[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(2): 361-368. |
16 | 李刚, 李小森. 过冷度对气体水合物合成影响的实验研究[J]. 现代地质, 2010, 24(3): 627-631, 637. |
Li G, Li X S. Experimental investigation of the supercooling effect on methane hydrate formation[J]. Geoscience, 2010, 24(3): 627-631, 637. | |
17 | 蒋观利, 吴青柏, 蒲毅彬. 降温过程对粗砂土中甲烷水合物形成的影响[J]. 地球物理学报, 2009, 52(9): 2387-2393. |
Jiang G L, Wu Q B, Pu Y B. The effect of cooling process on the formation of methane hydrate within the coarse sand[J]. Chinese Journal of Geophysics, 2009, 52(9): 2387-2393. | |
18 | 蒋观利, 吴青柏, 展静. 降温速率和粒径对砂土中甲烷水合物形成过程影响研究[J]. 天然气地球科学, 2011, 22(5): 920-925. |
Jiang G L, Wu Q B, Zhan J. The effects of cooling rate and particle size of medium to the formation of methane hydrate in sands[J]. Natural Gas Geoscience, 2011, 22(5): 920-925. | |
19 | 陈花, 关富佳, 刘浏. 不同降温模式对天然气水合物合成的影响[J]. 科学技术与工程, 2019, 19(19): 101-105. |
Chen H, Guan F J, Liu L. Effect of different cooling modes on nature gas hydrate synthesis[J]. Science Technology and Engineering, 2019, 19(19): 101-105. | |
20 | 程琪, 孙永昊, 汪卫华. 超快差示扫描量热数据的俯视法分析[J]. 物理学报, 2024, 73(7): 301-310. |
Cheng Q, Sun Y H, Wang W H. Overhead method analysis of ultrafast differential scanning calorimetry data[J]. Journal of Physics, 2024, 73(7): 301-310. | |
21 | 康涛泉. 冻土温度下甲烷水合物生成与分解特性研究[D]. 大连: 大连理工大学, 2022. |
Kang T Q. Study on formation and dissociation characteristics of methane hydrate under permafrost temperature[D]. Dalian: Dalian University of Technology, 2022. | |
22 | Kyung D, Lee K, Kim H, et al. Effect of marine environmental factors on the phase equilibrium of CO2 hydrate[J]. International Journal of Greenhouse Gas Control, 2014, 20: 285-292. |
23 | Zhao Y, Zhang Z C. Molecular insights into the influence of major marine ions on carbon dioxide hydrate growth[J]. Crystal Growth & Design, 2024, 24(3): 1380-1388. |
24 | 张伦祥. 天然气水合物相变微观特性与气体置换机制研究[D]. 大连: 大连理工大学, 2019. |
Zhang L X. Study on phase transition micro-characteristic and gas replacement mechanism of natural gas hydrate[D]. Dalian: Dalian University of Technology, 2019. | |
25 | 杜帅. 卤盐/甲酸盐在水合物生成过程中作用机理的分子模拟[D]. 东营: 中国石油大学(华东), 2021. |
Du S. Molecular simulation on action mechanisms of halide salt and formate during hydrate formation[D]. Dongying: China University of Petroleum, 2021. | |
26 | 张颖龙. 天然气水合物开采的微观分子动力学与宏观多物理场耦合研究[D]. 济南: 山东大学, 2023. |
Zhang Y L. Study on the microscopic molecular dynamics and macroscopic multiphysics field coupling for natural gas hydrate exploitation[D]. Jinan: Shandong University, 2023. | |
27 | 郑艳红. 甲烷水合物在盐、醇类介质中相平衡研究[D]. 兰州: 中国科学院研究生院(兰州地质研究所), 2002. |
Zheng Y H. Hydrate phase equilibrium of methane in the aqueous solutions of salts and methanol medium[D]. Lanzhou: Oil and Gas Research Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 2002. | |
28 | Wang H, Lu Y, Zhang X X, et al. Molecular dynamics of carbon sequestration via forming CO2 hydrate in a marine environment[J]. Energy & Fuels, 2023, 37(13): 9309-9317. |
29 | Yang M J, Jing W, Zhao J F, et al. Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))[J]. Energy, 2016, 106: 546-553. |
30 | Zheng J N, Yang M J, Liu Y, et al. Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination[J]. The Journal of Chemical Thermodynamics, 2017, 104: 9-15. |
31 | Wang Y, Zhong D L, Li Z, et al. Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases[J]. Energy, 2020, 197: 117209. |
32 | 周麟晨, 孙志高, 李娟, 等. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141. |
Zhou L C, Sun Z G, Li J, et al. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141. |
[1] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[2] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[3] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
[4] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[5] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
[6] | Chenggong CHANG, Haonan SONG, Feixia LEI, Zichen DI, Fangqin CHENG. Study on the carbon reduction potential of blast furnace injection process using reformed coke oven gas [J]. CIESC Journal, 2024, 75(6): 2344-2352. |
[7] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
[8] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
[9] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
[10] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[11] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[12] | Zhi ZHU, Hengjie XU, Wei CHEN, Wenyuan MAO, Qiangguo DENG, Xuejian SUN. Study on critical chocked characteristics of supercritical carbon dioxide spiral groove dry gas seal under thermal-fluid coupling lubrication [J]. CIESC Journal, 2024, 75(2): 604-615. |
[13] | Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid [J]. CIESC Journal, 2024, 75(2): 439-449. |
[14] | Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media [J]. CIESC Journal, 2024, 75(1): 110-119. |
[15] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||