CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1987-2000.DOI: 10.11949/0438-1157.20231297
• Energy and environmental engineering • Previous Articles Next Articles
Lihao LIU1(), Ting HUANG2, Yu YONG3, Xinhao LUO1, Zeming ZHAO1, Shangfei SONG1(), Bohui SHI1, Guangjin CHEN1, Jing GONG1
Received:
2023-12-05
Revised:
2024-03-28
Online:
2024-06-25
Published:
2024-05-25
Contact:
Shangfei SONG
刘礼豪1(), 黄婷2, 雍宇3, 罗昕浩1, 赵泽明1, 宋尚飞1(), 史博会1, 陈光进1, 宫敬1
通讯作者:
宋尚飞
作者简介:
刘礼豪(1997—),男,博士研究生, liuliao72@163.com
基金资助:
CLC Number:
Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems[J]. CIESC Journal, 2024, 75(5): 1987-2000.
刘礼豪, 黄婷, 雍宇, 罗昕浩, 赵泽明, 宋尚飞, 史博会, 陈光进, 宫敬. 含粉砂盐水体系甲烷水合物生成与固相沉积规律[J]. 化工学报, 2024, 75(5): 1987-2000.
Add to citation manager EndNote|Ris|BibTeX
实验编号 | 流量/(kg/h) | 粉砂浓度/%(质量分数) | 盐浓度/% (质量分数) | 压力/MPa |
---|---|---|---|---|
SY 1 | 1160 | 0 | 0 | 5.15 |
SY 2 | 1160 | 0.1 | 3 | 5.15 |
SY 3 | 1160 | 0.5 | 3 | 5.15 |
SY 4 | 1160 | 1.5 | 3 | 5.15 |
SY 5 | 1160 | 0.1 | 3 | 6.45 |
SY 6 | 1160 | 0.5 | 3 | 6.45 |
SY 7 | 1160 | 1.5 | 3 | 6.45 |
SY 8 | 1600 | 0 | 0 | 5.15 |
SY 9 | 1600 | 0.1 | 0 | 5.15 |
SY 10 | 1600 | 0 | 3 | 5.15 |
SY 11 | 1600 | 0.1 | 3 | 5.15 |
SY 12 | 1600 | 0.5 | 3 | 5.15 |
SY 13 | 1600 | 1.5 | 3 | 5.15 |
Table 1 Summary of experimental conditions
实验编号 | 流量/(kg/h) | 粉砂浓度/%(质量分数) | 盐浓度/% (质量分数) | 压力/MPa |
---|---|---|---|---|
SY 1 | 1160 | 0 | 0 | 5.15 |
SY 2 | 1160 | 0.1 | 3 | 5.15 |
SY 3 | 1160 | 0.5 | 3 | 5.15 |
SY 4 | 1160 | 1.5 | 3 | 5.15 |
SY 5 | 1160 | 0.1 | 3 | 6.45 |
SY 6 | 1160 | 0.5 | 3 | 6.45 |
SY 7 | 1160 | 1.5 | 3 | 6.45 |
SY 8 | 1600 | 0 | 0 | 5.15 |
SY 9 | 1600 | 0.1 | 0 | 5.15 |
SY 10 | 1600 | 0 | 3 | 5.15 |
SY 11 | 1600 | 0.1 | 3 | 5.15 |
SY 12 | 1600 | 0.5 | 3 | 5.15 |
SY 13 | 1600 | 1.5 | 3 | 5.15 |
实验编号 | 体系 | 诱导期/min |
---|---|---|
SY8-1 | 纯水 | 10.8 |
SY8-2 | 17.4 | |
SY8-3 | 18.6 | |
平均诱导期 | 15.4±3.2 | |
SY9-1 | 0.1%(质量分数)粉砂 | 21.00 |
SY9-2 | 21.60 | |
SY9-3 | 22.80 | |
平均诱导期 | 21.8±0.67 | |
SY10-1 | 3%(质量分数) NaCl | 31.8 |
SY10-2 | 19.8 | |
SY10-3 | 25.2 | |
平均诱导期 | 25.6±4.13 | |
SY11-1 | 3%(质量分数)NaCl+ 0.1%(质量分数)粉砂 | 67.2 |
SY11-2 | 39 | |
SY11-3 | 46.8 | |
平均诱导期 | 51±10.8 |
Table 2 Hydrate induction time in different systems under the same flow conditions
实验编号 | 体系 | 诱导期/min |
---|---|---|
SY8-1 | 纯水 | 10.8 |
SY8-2 | 17.4 | |
SY8-3 | 18.6 | |
平均诱导期 | 15.4±3.2 | |
SY9-1 | 0.1%(质量分数)粉砂 | 21.00 |
SY9-2 | 21.60 | |
SY9-3 | 22.80 | |
平均诱导期 | 21.8±0.67 | |
SY10-1 | 3%(质量分数) NaCl | 31.8 |
SY10-2 | 19.8 | |
SY10-3 | 25.2 | |
平均诱导期 | 25.6±4.13 | |
SY11-1 | 3%(质量分数)NaCl+ 0.1%(质量分数)粉砂 | 67.2 |
SY11-2 | 39 | |
SY11-3 | 46.8 | |
平均诱导期 | 51±10.8 |
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL: CRC Press, 2007. |
2 | Makogon Y F. Natural gas hydrates-a promising source of energy[J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. |
3 | 高大统. 可燃冰的工业化开采前景[J]. 油气储运, 2017, 36(10): 1223-1226. |
Gao D T. Industrialized exploitation prospect of combustible ice[J]. Oil & Gas Storage and Transportation, 2017, 36(10): 1223-1226. | |
4 | 周守为, 李清平, 吕鑫, 等. 天然气水合物开发研究方向的思考与建议[J]. 中国海上油气, 2019, 31(4): 1-8. |
Zhou S W, Li Q P, Lyu X, et al. Thinking and suggestions on research direction of natural gas hydrate development[J]. China Offshore Oil and Gas, 2019, 31(4): 1-8. | |
5 | 李淑霞, 于笑, 李爽, 等. 神狐水合物藏降压开采产气量预测及增产措施研究[J]. 中国海上油气, 2020, 32(6): 122-127. |
Li S X, Yu X, Li S, et al. Prediction of gas production of Shenhu hydrate reservoir by depressurization and its stimulation treatment[J]. China Offshore Oil and Gas, 2020, 32(6): 122-127. | |
6 | 韩笑, 刘姝, 万青翠, 等. 热激法开采天然气水合物研究进展[J]. 油气储运, 2019, 38(8): 849-855. |
Han X, Liu S, Wan Q C, et al. Research progress on the exploitation of natural gas hydrate by thermal stimulation method[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 849-855. | |
7 | Zhang L, Zou H, Han B, et al. Hydrate formation and deposition behaviors with kinetic inhibitors under pseudo multiphase flow[J]. Fuel, 2024, 360: 130612. |
8 | Wang J G, Meng Y, Han B Y, et al. Hydrate blockage in subsea oil/gas flowlines: prediction, prevention, and remediation[J]. Chemical Engineering Journal, 2023, 461: 142020. |
9 | Wang J G, Zhang Q, Jin R, et al. Identification and prediction of hydrate–slug flow to improve safety and efficiency of deepwater hydrocarbon transportation[J]. Journal of Cleaner Production, 2023, 430: 139632. |
10 | Kurihara M. Mallik 2002 gas hydrate production research well program: numerical simulation studies for analyzing the mechanism of gas production from methane hydrate reservoirs[J]. Journal of the Japan Institute of Energy, 2005, 84:112-118. |
11 | Fujii T, Noguchi S, Takayama T, et al. Site selection and formation evaluation at the 1st offshore methane hydrate production test site in the eastern Nankai trough, Japan[C]//75th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2013. London, UK, 2013. |
12 | 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1-8. |
Zhou S W, Chen W, Li Q P, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4): 1-8. | |
13 | 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. |
Ye J L, Qin X W, Xie W W, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557-568. | |
14 | 刘翔, 王武昌, 张佳璐, 等. 管道内天然气水合物沉积演化进程数值模拟[J]. 油气储运, 2022, 41(2): 211-218. |
Liu X, Wang W C, Zhang J L, et al. Numerical simulation on deposition evolution of natural gas hydrate in pipeline[J]. Oil & Gas Storage and Transportation, 2022, 41(2): 211-218. | |
15 | 李文庆, 王君傲, 段旭, 等. 基于CFD-DEM耦合方法的水合物堵塞模拟[J]. 油气储运, 2020, 39(12): 1379-1385. |
Li W Q, Wang J A, Duan X, et al. Hydrate blockage simulation based on CFD-DEM coupling method[J]. Oil & Gas Storage and Transportation, 2020, 39(12): 1379-1385. | |
16 | Arjmandi M, Tohidi B, Danesh A, et al. Is subcooling the right driving force for testing low-dosage hydrate inhibitors?[J]. Chemical Engineering Science, 2005, 60(5): 1313-1321. |
17 | Li K, Fan S S. Effect of magnetization of water on induction time and growth period of natural gas hydrate[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(s1):81-85. |
18 | Jiang H, Jordan K D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. Journal of Physical Chemistry C, 2010, 114(12): 5555-5564. |
19 | Linga P, Daraboina N, Ripmeester J A, et al. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel[J]. Chemical Engineering Science, 2012, 68(1): 617-623. |
20 | Zhang C S, Fan S S, Liang D Q, et al. Effect of additives on formation of natural gas hydrate[J]. Fuel, 2004, 83(16): 2115-2121. |
21 | 孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2): 123-127, 98. |
Sun S C, Ye Y G, Liu C L, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil & Gas, 2011, 40(2): 123-127, 98. | |
22 | Gao Q, Zhao J Z, Yin Z Y, et al. Experimental study on methane hydrate formation in quartz sand under tri-axial condition[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103707. |
23 | Englezos P, Hall S. Phase equilibrium data on carbon dioxide hydrate in the presence of electrolytes, water soluble polymers and montmorillonite[J]. Canadian Journal of Chemical Engineering, 1994, 72(5): 887-893. |
24 | Turner D J, Cherry R S, Sloan E D. Sensitivity of methane hydrate phase equilibria to sediment pore size[J]. Fluid Phase Equilibria, 2005, 228/229: 505-510. |
25 | Park S S, An E J, Lee S B, et al. Characteristics of methane hydrate formation in carbon nanofluids[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 443-448. |
26 | Zhang L, Xu S D, Li X, et al. Reaction kinetic characteristics and model of methane hydrate formation in porous media[J]. Energy & Fuels, 2017, 31(8): 8548-8559. |
27 | Zeng H, Zhang Y, Zhang L, et al. Effects of the NaCl concentration and montmorillonite content on formation kinetics of methane hydrate[J]. Journal of Marine Science and Engineering, 2022, 10(4): 548. |
28 | Constant Agnissan A C, Guimpier C, Terzariol M, et al. Influence of clay-containing sediments on methane hydrate formation: impacts on kinetic behavior and gas storage capacity[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(9): 2023JB027333. |
29 | 柳扬. 蜡与水合物共存W/O体系流动及沉积规律研究[D]. 北京: 中国石油大学 (北京), 2019. |
Liu Y. Study on the flow and deposition mechanisms of W/O systems containing wax and hydrates[D].Beijing: China University of Petroleum, 2019. | |
30 | Brown E P, Turner D, Grasso G, et al. Effect of wax/anti-agglomerant interactions on hydrate depositing systems[J]. Fuel, 2020, 264: 116573. |
31 | Wang W, Huang Q Y, Hu S J, et al. Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties[J]. Energy & Fuels, 2020, 34(2): 1482-1491. |
32 | Liu Z M, Geng X, Gao Y, et al. Effect of wax crystal on the kinetic and morphology of gas hydrate deposition in water-in-oil emulsions[J]. Fuel, 2022, 330: 125501. |
33 | 陈玉川. 微米级颗粒分散体系内水合物生成与流动规律研究[D]. 北京: 中国石油大学 (北京), 2021. |
Chen Y C. Study on hydrate formation and slurry flow properties in the dispersed systems with micron-sized particles[D].Beijing: China University of Petroleum, 2021. | |
34 | Shi B H, Chen Y C, Wang X F, et al. Flowloop investigation into hydrate formation and slurry flow in the presence of micron-sized sand particles[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110251. |
35 | 丁麟. 多相混输管路天然气水合物浆液流动稳定性研究[D]. 北京: 中国石油大学 (北京), 2019. |
Ding L. Study on the stability of natural gas hydrate slurry flow in a multiphase transportation pipeline [D]. Beijing: China University of Petroleum, 2019. | |
36 | Liu Y, Lv X F, Shi B H, et al. Rheological study of low wax content hydrate slurries considering phase interactions[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104106. |
37 | 王韧. 钻井液中纳米SiO2和水合物抑制剂对水合物形成影响研究[D]. 武汉: 中国地质大学, 2017. |
Wang R. Study on the effects of nano-SiO2 and hydrate inhibitors on hydrate formation in drilling fluid[D].Wuhan: China University of Geosciences, 2017. | |
38 | Hua Z, Li M, Lin M, et al. Characterization of sandstone surface wettability by surface potential[J]. Journal of China University of Petroleum Edition of Natrual Science, 2015, 39(2):142-50. |
39 | Si S X, Yan Z, Gong Z B, et al. Pilot study of oilfield wastewater treatment by micro-flocculation filtration process[J]. Water Science and Technology, 2018, 77(1): 101-107. |
40 | 戴彩丽, 曹梦娇, 吴一宁, 等. 微纳孔隙油-水-岩石微观界面相互作用研究进展[J]. 深圳大学学报 (理工版), 2021, 38(6): 551-562. |
Dai C L, Cao M J, Wu Y N, et al. Research progress on oil-water-rock interface interaction in micro-nano porous medium[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(6): 551-562. | |
41 | Demir C, Abramov A A, Çelik M S. Flotation separation of Na-feldspar from K-feldspar by monovalent salts[J]. Minerals Engineering, 2001, 14(7): 733-740 |
42 | Liu L H, Liu S Y, Peng H L, et al. Surface charge of mesoporous calcium silicate and its adsorption characteristics for heavy metal ions[J]. Solid State Sciences, 2020, 99: 106072. |
43 | Gupta R, Pathak D D. Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127695. |
44 | Lv X F, Shi B H, Wang Y, et al. Experimental Study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop[J]. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 2015, 70(6): 1111-1124. |
45 | 骆庆群. 气体在疏水性表面的吸附和积聚现象及其作用研究[D]. 太原: 太原理工大学, 2016. |
Luo Q Q. Gas adsorption and accumulation on hydrophobic surface and its effects[D].Taiyuan: Taiyuan University of Technology, 2016. | |
46 | Ishida N. Direct measurement of hydrophobic particle-bubble interactions in aqueous solutions by atomic force microscopy: effect of particle hydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300(3): 293-299. |
47 | Liu L H, Shi B H, Song S F, et al. Co-deposition characteristics of hydrates and sands in gas-salty water-sands flow system[J]. Fuel, 2023, 346: 128276. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[3] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[4] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[5] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[6] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[7] | Ping OUYANG, Rui ZHANG, Jian ZHOU, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Electrochemical behavior and copper electrodeposition mechanism of Cu-Al bimetallic composite ionic liquid [J]. CIESC Journal, 2022, 73(7): 3212-3221. |
[8] | Cong YUAN, Ge PU, Jie GAO, Shuaihui JIA. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier [J]. CIESC Journal, 2022, 73(3): 1359-1368. |
[9] | Zuodong LIU, Yuchen WANG, Weiwei XING, Bo ZHAO, Zhiming XU. Analysis of composite modified surface inhibiting particle fouling accumulation characteristics [J]. CIESC Journal, 2022, 73(11): 4928-4937. |
[10] | Junjun GU, Rui LI, Xingyi WU, Xianqiang TANG, Yanping HU. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface [J]. CIESC Journal, 2022, 73(11): 5118-5127. |
[11] | Huihui HU, Liang YANG, Daoping LIU, Ke ZHANG. Kinetics of methane hydrate formation in droplets of low-dose superabsorbent resin solution [J]. CIESC Journal, 2022, 73(10): 4659-4667. |
[12] | Maoqiao XIANG, Yuqi GENG, Qingshan ZHU. Research advances in preparation technology and quality of silicon nitride powder [J]. CIESC Journal, 2022, 73(1): 73-84. |
[13] | Shaoling CONG, Jie ZHAO, Yufei YANG, Changqing WU, Fan HE, Hua YUAN, Xiaoqin WANG, Shanxin XIONG, Yan WU, Anning ZHOU. Synthesis of N-doped carbon micro-nanotubes using coal-based polyaniline as a carbon and nitrogen source [J]. CIESC Journal, 2021, 72(9): 4950-4960. |
[14] | JIN Mo, LIU Daoyin, CHEN Xiaoping. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method [J]. CIESC Journal, 2021, 72(4): 1939-1946. |
[15] | Junhua PEI, Liang YANG, Xin WANG, Han HU, Daoping LIU. Experimental study on kinetics of methane hydrate formation enhanced by copper foam [J]. CIESC Journal, 2021, 72(11): 5751-5760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||