CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 2001-2016.DOI: 10.11949/0438-1157.20231201
• Energy and environmental engineering • Previous Articles Next Articles
Xu MA1,2(), Yadong TENG3,4, Jie LIU3,4, Yulu WANG1,2, Peng ZHANG1(), Lianhai ZHANG1, Wanlong YAO5, Jing ZHAN1, Qingbai WU1
Received:
2023-11-21
Revised:
2024-03-27
Online:
2024-06-25
Published:
2024-05-25
Contact:
Peng ZHANG
马旭1,2(), 滕亚栋3,4, 刘杰3,4, 王宇璐1,2, 张鹏1(), 张莲海1, 姚万龙5, 展静1, 吴青柏1
通讯作者:
张鹏
作者简介:
马旭(1996—),女,硕士研究生,maxu@nieer.ac.cn
基金资助:
CLC Number:
Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method[J]. CIESC Journal, 2024, 75(5): 2001-2016.
马旭, 滕亚栋, 刘杰, 王宇璐, 张鹏, 张莲海, 姚万龙, 展静, 吴青柏. 喷雾法水合物法捕集分离烟道气中CO2[J]. 化工学报, 2024, 75(5): 2001-2016.
Add to citation manager EndNote|Ris|BibTeX
体 系 | 编号 | 促进剂浓度/% (质量分数) | 雾化喷嘴孔径/mm | 原料气中CO2/%(摩尔分数) | 最终消耗的气体量/(mol/mol H2O) | 水转化为水合物比率/% |
---|---|---|---|---|---|---|
CO2/N2/H2O | 1 | 纯水 | 0.8 | 14.35 | 0.0053 | 3.0 |
2 | 纯水 | 0.1 | 14.46 | 0.0061 | 3.5 | |
CO2/N2/L-Met/H2O | 3 | 0.1 | 0.8 | 15.55 | 0.0587 | 33.5 |
4 | 1.0 | 0.8 | 16.87 | 0.0537 | 30.7 | |
5 | 0.1 | 0.1 | 19.08 | 0.0749 | 42.7 | |
6 | 1.0 | 0.1 | 13.19 | 0.0654 | 37.3 | |
CO2/N2/SDS/H2O | 7 | 0.1 | 0.8 | 18.15 | 0.0848 | 48.4 |
8 | 1.0 | 0.8 | 13.67 | 0.0733 | 41.9 | |
9 | 0.1 | 0.1 | 15.34 | 0.0407 | 23.3 |
Table 1 Experimental results in different 640 ml systems of SDS and L-Met promoters (7.71 MPa,269.15 K)
体 系 | 编号 | 促进剂浓度/% (质量分数) | 雾化喷嘴孔径/mm | 原料气中CO2/%(摩尔分数) | 最终消耗的气体量/(mol/mol H2O) | 水转化为水合物比率/% |
---|---|---|---|---|---|---|
CO2/N2/H2O | 1 | 纯水 | 0.8 | 14.35 | 0.0053 | 3.0 |
2 | 纯水 | 0.1 | 14.46 | 0.0061 | 3.5 | |
CO2/N2/L-Met/H2O | 3 | 0.1 | 0.8 | 15.55 | 0.0587 | 33.5 |
4 | 1.0 | 0.8 | 16.87 | 0.0537 | 30.7 | |
5 | 0.1 | 0.1 | 19.08 | 0.0749 | 42.7 | |
6 | 1.0 | 0.1 | 13.19 | 0.0654 | 37.3 | |
CO2/N2/SDS/H2O | 7 | 0.1 | 0.8 | 18.15 | 0.0848 | 48.4 |
8 | 1.0 | 0.8 | 13.67 | 0.0733 | 41.9 | |
9 | 0.1 | 0.1 | 15.34 | 0.0407 | 23.3 |
Fig.4 Temperature and pressure as functions of time during hydrate formation from solutions of CO2/H2O /SDS and CO2/H2O /L-Met respectively with concentrations of 0.1% and 1% (mass fraction)
体 系 | 编号 | 促进剂浓度/% (质量分数) | 雾化喷嘴孔径/mm | 原料气中CO2/%(摩尔分数) | 最终消耗的气体量/(mol/mol H2O) | 水转化为水合物比率/% |
---|---|---|---|---|---|---|
CO2/N2/H2O | 1 | 纯水 | 0.8 | 14.38 | 0.0075 | 4.3 |
2 | 纯水 | 0.1 | 14.53 | 0.0111 | 6.3 | |
CO2/N2/L-Met/H2O | 3 | 0.1 | 0.8 | 16.64 | 0.1220 | 69.6 |
4 | 1.0 | 0.8 | 16.84 | 0.1306 | 74.5 | |
5 | 0.1 | 0.1 | 19.66 | 0.1599 | 91.2 | |
6 | 1.0 | 0.1 | 13.63 | 0.1319 | 75.2 | |
CO2/N2/SDS/H2O | 7 | 0.1 | 0.8 | 18.41 | 0.1187 | 67.7 |
8 | 1.0 | 0.8 | 13.95 | 0.0574 | 30.2 | |
9 | 0.1 | 0.1 | 15.56 | 0.0670 | 38.2 |
Table 2 Experimental results in different 160 ml systems of SDS and L-Met promoters (7.71 MPa,269.15 K)
体 系 | 编号 | 促进剂浓度/% (质量分数) | 雾化喷嘴孔径/mm | 原料气中CO2/%(摩尔分数) | 最终消耗的气体量/(mol/mol H2O) | 水转化为水合物比率/% |
---|---|---|---|---|---|---|
CO2/N2/H2O | 1 | 纯水 | 0.8 | 14.38 | 0.0075 | 4.3 |
2 | 纯水 | 0.1 | 14.53 | 0.0111 | 6.3 | |
CO2/N2/L-Met/H2O | 3 | 0.1 | 0.8 | 16.64 | 0.1220 | 69.6 |
4 | 1.0 | 0.8 | 16.84 | 0.1306 | 74.5 | |
5 | 0.1 | 0.1 | 19.66 | 0.1599 | 91.2 | |
6 | 1.0 | 0.1 | 13.63 | 0.1319 | 75.2 | |
CO2/N2/SDS/H2O | 7 | 0.1 | 0.8 | 18.41 | 0.1187 | 67.7 |
8 | 1.0 | 0.8 | 13.95 | 0.0574 | 30.2 | |
9 | 0.1 | 0.1 | 15.56 | 0.0670 | 38.2 |
1 | Lee H, Romero J. A report of the intergovernmental panel on climate change. contribution of working groups Ⅰ, Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva: IPCC, 2023. |
2 | Liu H J, Were P, Li Q, et al. Worldwide status of CCUS technologies and their development and challenges in China[J]. Geofluids, 2017, 2017: 6126505. |
3 | Gupta M, Coyle I, Thambimuthu K. CO2 capture technologies and opportunities in Canada[C]//1st Canadian CC&S Technology Roadmap Workshop. Canada: CANMET Energy Technology Centre Natural Resources Canada, 2003: 18-19. |
4 | Pellegrini G, Strube R, Manfrida G. Comparative study of chemical absorbents in postcombustion CO2 capture[J]. Energy, 2010, 35(2): 851-857. |
5 | Martunus, Helwani Z, Wiheeb A D, et al. Improved carbon dioxide capture using metal reinforced hydrotalcite under wet conditions[J]. International Journal of Greenhouse Gas Control, 2012, 7: 127-136. |
6 | Dou B L, Song Y C, Liu Y G, et al. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 759-765. |
7 | Sevilla M, Fuertes A B. CO2 adsorption by activated templated carbons[J]. Journal of Colloid and Interface Science, 2012, 366(1): 147-154. |
8 | Zanganeh K E, Shafeen A, Salvador C. CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit[J]. Energy Procedia, 2009, 1(1): 247-252. |
9 | Sloan E D, Koh C A, Koh C A. Clathrate Hydrates of Natural Gases[M]. New York: CRC Press, 2007: 685-692. |
10 | Park S, Lee S, Lee Y, et al. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts[J]. Environmental Science & Technology, 2013, 47(13): 7571-7577. |
11 | Zhang P, Wu Q B, Mu C C. Influence of temperature on methane hydrate formation[J]. Scientific Reports, 2017, 7: 7904. |
12 | Kang S P, Lee H, Lee C S, et al. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran[J]. Fluid Phase Equilibria, 2001, 185(1/2): 101-109. |
13 | Linga P, Kumar R, Englezos P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures[J]. Chemical Engineering Science, 2007, 62(16): 4268-4276. |
14 | Seo Y T, Kang S P, Lee H E, et al. Hydrate phase equilibria for gas mixtures containing carbon dioxide: a proof-of-concept to carbon dioxide recovery from multicomponent gas stream[J]. Korean Journal of Chemical Engineering, 2000, 17(6): 659-667. |
15 | Kutergin O B, Melnikov V P, Nesterov A N. Influence of surfactants on the mechanism and kinetics of the formation of gas hydrates[J]. Doklady Akademii Nauk, 1992, 323(3): 549-553. |
16 | 郎雪梅, 樊栓狮, 王燕鸿, 等. 笼型水合物为能源化工带来新机遇[J]. 化工进展, 2021, 40(9): 4703-4710. |
Lang X M, Fan S S, Wang Y H, et al. Opportunities for energy and chemical engineering through clathrate hydrates[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4703-4710. | |
17 | Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
18 | Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637. |
19 | Li G, Liu D P, Xie Y M, et al. Study on effect factors for CO2 hydrate rapid formation in a water-spraying apparatus[J]. Energy & Fuels, 2010, 24(8): 4590-4597. |
20 | 石定贤, 赵建忠, 赵阳升. 水合物合成喷雾强化机理研究[J]. 辽宁工程技术大学学报, 2006, 25(1): 131-133. |
Shi D X, Zhao J Z, Zhao Y S. Research on atomization strengthening mechanics for hydrate formation[J]. Journal of Liaoning Technical University, 2006, 25(1): 131-133. | |
21 | Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359. |
22 | Hassanpouryouzband A, Joonaki E, Farahani M V, et al. Gas hydrates in sustainable chemistry[J]. Chemical Society Reviews, 2020, 49(15): 5225-5309. |
23 | Prasad P S R, Sai Kiran B. Clathrate hydrates of greenhouse gases in the presence of natural amino acids: storage, transportation and separation applications[J]. Scientific Reports, 2018, 8: 8560. |
24 | Prasad P S, Kiran B S. Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates?[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 461-466. |
25 | Bavoh C B, Nashed O, Khan M S, et al. The impact of amino acids on methane hydrate phase boundary and formation kinetics[J]. Journal of Chemical Thermodynamics, 2018, 117: 48-53. |
26 | Cai Y H, Chen Y L, Li Q J, et al. CO2 hydrate formation promoted by a natural amino acid l-methionine for possible application to CO2 capture and storage[J]. Energy Technology, 2017, 5(8): 1195-1199. |
27 | Liu X J, Ren J J, Chen D Y, et al. Comparison of SDS and L-methionine in promoting CO2 hydrate kinetics: implication for hydrate-based CO2 storage[J]. Chemical Engineering Journal, 2022, 438: 135504. |
28 | Pandey J S, Daas Y, Sieverts M, et al. Insights into CO2 capture by flue gas hydrate formation using selected amino acids and surfactant[C]// IUPAC 50th General Assembly. Paris, France, 2019: 1. |
29 | Jarrahian A, Nakhaee A. Hydrate-liquid-vapor equilibrium condition of N2+CO2+H2O system: measurement and modeling[J]. Fuel, 2019, 237: 769-774. |
30 | Sun S C, Liu C L, Meng Q G. Hydrate phase equilibrium of binary guest-mixtures containing CO2 and N2 in various systems[J]. Journal of Chemical Thermodynamics, 2015, 84: 1-6. |
31 | Ballard A L. A non-ideal hydrate solid solution model for a multi-phase equilibria program[D]. Golden: Colorado School of Mines, 2002. |
32 | Kumar R, Englezos P, Moudrakovski I, et al. Structural and compositional characterization of hydrates formed from CO2/H2 and CO2/H2/C3H8 gas mixtures in relation to simultaneous CO2 capture and H2 production[J]. AIChE Journal, 2009, 55(6): 1584-94. |
33 | Davidson D W, Leaist D G, Hesse R. Oxygen-18 enrichment in the water of a clathrate hydrate[J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2293-2295. |
34 | Ripmeester J A, Ratcliffe C I. Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number[J]. Journal of Physical Chemistry, 1988, 92(2): 337-339. |
35 | Kang S P, Lee H E. Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements[J]. Environmental Science & Technology, 2000, 34(20): 4397-4400. |
36 | Seo Y T, Moudrakovski I L, Ripmeester J A, et al. Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environmental Science & Technology, 2005, 39(7): 2315-2319. |
37 | Li Y, Maria Gambelli A, Chen J Z, et al. Experimental study on the competition between carbon dioxide hydrate and ice below the freezing point[J]. Chemical Engineering Science, 2023, 268: 118426. |
38 | Linga P. Separation of carbon dioxide from flue gas (post-combustion capture) via gas hydrate crystallization[D]. Vancouver: University of British Columbia, 2009. |
39 | Burla S K, Pinnelli S R P. Enrichment of gas storage in clathrate hydrates by optimizing the molar liquid water-gas ratio[J]. RSC Advances, 2022, 12(4): 2074-2082. |
40 | Zhang X, Huang Y L, Ma Z S, et al. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(42): 22995-23002. |
41 | 张学民, 李洋, 姚泽, 等. 表面活性剂对气体水合物生成过程的定量影响[J]. 过程工程学报, 2018, 18(2): 356-360. |
Zhang X M, Li Y, Yao Z, et al. Quantitative influence of surfactant on the formation process for gas hydrate[J]. Chinese Journal of Process Engineering, 2018, 18(2): 356-360. | |
42 | Colbeck S C. Capillary bonding of wet surfaces—the effects of contact angle and surface roughness[J]. Journal of Adhesion Science and Technology, 1997, 11(3): 359-371. |
[1] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
[2] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[3] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
[4] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[5] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[6] | Mingqing TAO, Minghao MU, Teng CHENG, Bo WANG. Research on spray coupled cooling to enhance the removal of fine particles by cyclone separator [J]. CIESC Journal, 2024, 75(2): 584-592. |
[7] | Xiaoyang LI, Dong LI, Minglei TAO, Zhifu ZHOU, Lingyi ZHANG, Lizheng SU, Tianning ZHANG, Zhi LI, Bin CHEN. Experimental study on heat transfer characteristics of multi nozzle spray cooling surface [J]. CIESC Journal, 2024, 75(1): 231-241. |
[8] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[9] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[10] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[13] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||